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Abstract

We analyze asset prices and liquidity in an economy with large investors and many

risky assets. The model allows for general investors’ preferences and distributions of asset

payoffs. We propose a constructive solution approach: solving for equilibrium reduces to

solving nonlinear first-order ODE. We show that the equilibrium is unique under mild

restrictions on payoffs and preferences. Liquidity risk is priced in equilibrium, leading

to deviations from the consumption-CAPM. In stark contrast to a constant absolute risk

aversion (CARA) benchmark, in a model with wealth effects, we obtain (1) illiquidity

of risk-free assets (such as, e.g., Treasuries); (2) illiquidity contagion (a sell-off in one

asset may have a price impact on assets with unrelated fundamentals) and asymmetry

in cross-asset price impacts; (3) market liquidity may decrease in the number of traders

and their wealth; and (4) in the presence of liquidity shortage, price impact may become

negative giving rise to an illiquidity premium in asset prices; (5) safe assets are more

illiquid because they have a larger price impact. In the presence of wealth heterogeneity,

large traders trade more but also reduce their demands more. As a group, they account for

a smaller fraction of orders compared to small investors. Fatter-tailed wealth distribution

makes markets less liquid.
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Large, institutional investors dominate modern markets. After the 2007-2008 financial

crisis, many of these investors have been classified as systemically important financial institu-

tions (SiFi): Institutions whose collapse would pose a serious risk to the global economy. One

of the key channels through which SiFis may impact financial markets is through their portfolio

liquidation decisions: When hit by a shock, large institutions may need to simultaneously ad-

just their portfolio holdings, which may lead to large adverse movements in market prices due

to the SiFi’s (market) price impact and/or their inability to provide (enough) liquidity. While

formerly viewed as an artifact of risky, informationally sensitive securities, recent turmoils on

the government bond markets show that illiquidity is a major consideration even for extremely

liquid, money-like securities.1 In equilibrium, this illiquidity should be priced: The most illiq-

uid securities should trade at a discount, while liquid securities should trade at a so-called

“flight-to-liquidity” premium. In order to understand these effects, we need a theoretical model

of strategic behavior in a market populated by large (in terms of the wealth or assets under

management) investors who internalize their price impact. The goal of this paper is to develop

such a model.

We consider a multi-asset economy populated by a finite number of large, strategic, risk-

averse investors endowed with arbitrary preferences. Essentially, no restrictions are imposed on

the distribution of asset payoffs. We study symmetric equilibria in a game in which all strategic

investors submit identical, multi-dimensional demand schedules indicating the portfolio they

are willing to buy/sell for a given vector of prices. We show that, in equilibrium, assets are

priced according to the standard consumption Euler equation plus a correction term accounting

for market liquidity (price impact), linked to an endogenous measure of systemic risk that puts

a large weight on low consumption states. We find that, in stark contrast to models with

constant absolute risk aversion (CARA), wealth effects imply that price impact is typically

1For example, in October 2022, funding liquidity frictions of British Pension funds (large, strategic investors
in British government bonds) triggered a serious turmoil in the bond market, forcing the central bank to
intervene. See, e.g., Pinter (2023). Even the market for US Treasury bills, commonly viewed as “money-like”
and extremely liquid, is impacted by large money market funds whose strategic behavior affects T-bill rates.
See, e.g., Doerr, Eren, and Malamud (2023).
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asymmetric. This asymmetry implies the existence of endogenous systemic assets: That is,

assets whose sell-off triggers large moves in all security prices. These moves can be both positive

or negative, implying that we may have both “positively systemic” and “negatively systemic”

assets. These results have important implications for liquidity injection programs such as TARP

and QE: Understanding which assets are systemic may help policy-makers better shape their

asset purchase decisions.

In the model, wealth effects also lead to a natural notion of funding liquidity as the

amount of liquid cash reserves available to strategic investors. As a result, market liquidity

(price impact) is endogenously linked to funding liquidity in a fully micro-founded way, without

the need to introduce margin requirements and/or counter-party risk. Importantly, indefinitely

increasing funding liquidity does not necessarily make markets infinitely liquid: What matters

is whether funding liquidity (cash) is sufficiently uniformly distributed across the investor pop-

ulation. If cash is only concentrated in the hands of a few SiFis, markets stay highly illiquid,

making these SiFis vulnerable to shocks.

In standard, CARA-normal models, price impact is always proportional to the fun-

damental covariance matrix of the traded assets (Glebkin, Malamud, and Teguia, 2023). In

particular, risk-free assets (i.e., assets with zero variance) are always fully liquid in such mod-

els. We show that this is not true when preferences exhibit wealth effects: In this case, risk-free

bonds are also illiquid, and price impact may happen to be negative, in which case bond prices

may contain a flight-to-liquidity premium.

1 Literature Review

Our paper belongs to the large literature on strategic trading and price impact. In our model,

information is symmetric, and price impact arises due to traders’ limited risk-bearing capacity.

We model trade using the classic double auction protocol (also known as the uniform price
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(divisible) auction) in which traders submit price-contingent demand schedules. See, for ex-

ample, Kyle (1989), Vayanos and Vila (1999), Vives (2011), Rostek and Weretka (2012), Kyle,

Obizhaeva, and Wang (2017), Ausubel, Cramton, Pycia, Rostek, and Weretka (2014), Berge-

mann, Heumann, and Morris (2015), and Du and Zhu (2017) for the single asset case, as well

as Rostek and Weretka (2015b) and Malamud and Rostek (2017) for the multi-asset case.2 All

these papers use the standard CARA-Normal assumption to derive linear equilibria, whereby

the slopes of the demand schedules are independent of the price level, and the equilibrium price

impact (given by the inverse of the slope of the residual supply) is also constant, independent of

the trade size. Linearity of equilibrium depends crucially on the CARA-Normal assumption: It

is this assumption that ensures that the marginal value of asset holdings is constant and hence

guarantees the existence of linear equilibria.3

The double auction model considered in our paper allows us to study strategic liquidity

provision in the presence of wealth effects. In particular, for the first time in the literature, we

solve a fully micro-founded model linking market liquidity (price impact) and funding liquidity

(the capital of strategic traders). Our model offers a new perspective on the classical results

Brunnermeier and Pedersen (2009), showing how the two types of liquidity are interlinked in

subtle and unexpected ways. In particular, we show how funding liquidity can impact the

market liquidity of risk-free assets, a phenomenon that played a key role in the recent bond

market events (Pinter (2023)), and that cannot occur in the CARA setting of Brunnermeier

and Pedersen (2009).

2Sannikov and Skrzypacz (2016) develop an alternative trading protocol that they name “conditional double
auction”, where traders can condition their demand schedules on trading rates of other players.

3The only exception is the case two agents: Then, linear equilibria fail to exist but, as Du and Zhu (2017)
show, there often exist non-linear equilibria. There is also a large literature on competitive noisy rational ex-
pectations equilibria (REE) beyond the CARA-Normal setup with a continuum of non-strategic traders. For
example, several papers relax the assumption of normal payoff distributions but maintain the CARA assumption
or assume risk neutrality. See, Gennotte and Leland (1990), Ausubel (1990a), Ausubel (1990b), Barlevy and
Veronesi (2003), Bagnoli, Viswanathan, and Holden (2001), Yuan (2005), Breon-Drish (2015), Pálvölgyi and
Venter (2015), Chabakauri, Yuan, and Zachariadis (2017). These papers assume CARA utilities and do not
feature wealth effects. Glebkin, Gondhi, and Kuong (2021) feature wealth effects in a setup with CARA prefer-
ences: they study a setup with margin constraints, the tightness of which depends on the wealth level. Peress
(2003), Malamud (2015), Avdis and Glebkin (2023) study competitive models with asymmetric information and
non-CARA preferences.
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With the exception of Rostek and Weretka (2015a), Malamud and Rostek (2017), and

Glebkin et al. (2023),4 all of the above-mentioned papers consider the case of a single risky

asset. The closest to our paper is the recent work Glebkin et al. (2023), which shows that, in a

generic multi-asset setting with CARA preferences, the price impact matrix is (1) proportional

to the risk-neutral covariance matrix of asset payoffs and (2) decreases with the number of

agents. In particular, with CARA preferences, the price impact matrix is always symmetric,

and positive-semi-definite. The symmetry is a direct consequence of CARA demand schedules:

For any pair of assets, an increase in the price of asset 1 changes the demand for asset 2 by the

same amount as an increase in the price of asset 2 changes the demand for asset 1. Indeed, for

CARA preferences, what matters is the overall level of risk, and diversification benefits are the

same for each wealth level. By contrast, both symmetry and positive semi-definiteness break

down in the presence of wealth effects. Effectively, this is a consequence of the Slutsky equation,

whereby the substitution effects are symmetric across different assets (goods), while the income

effect is asymmetric. As a result, wealth effects imply the existence of systemic assets, that is,

assets whose price change has an asymmetrically large impact on the demand for other assets

in the economy.5

There is a growing literature emphasizing the importance of institutional investors in

modern financial markets. Allen (2001) points out that financial crises are associated with

liquidity shortage and argues that the effect of liquidity on asset prices should be endogenous.

Basak and Pavlova (2013) study the effects of institutional investors’ trades on asset prices when

these investors’ performance is measured relative to an index. These effects include excess cor-

relation among index stocks, excess index stocks’ volatility, and excess aggregate volatility.

Brunnermeier and Pedersen (2009) show that institutional investors’ aggregate (funding liq-

uidity) capital can drive risk premiums. See, also, Adrian, Etula, and Muir (2014) and He,

4 Rostek and Weretka (2015a) consider dynamics trading in a centralized exchange and link price impact
to the frequency of trade and the timing of information arrival. Malamud and Rostek (2017) consider general
fragmented market structures and allow for heterogeneity in risk aversions.

5Following the standard logic of the Slutsky income effect, an asset that plays an important role in the
agent’s portfolio may have a large income effect, and hence a large systemic importance.
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Kelly, and Manela (2017). Micro-level evidence on individual trades of institutional investors

(Çötelioğlu, Franzoni, and Plazzi (2021), Ben-David, Franzoni, Moussawi, and Sedunov (2021))

suggests the aggregated picture misses important aspects of real markets, and that the granu-

lar nature of investors and their individual strategic (i.e., internalizing price impact) behavior

are key to understanding the links between market and funding liquidity. We believe that our

model offers a tractable framework for analyzing this link and gaining a deeper understanding

of the precise role of institutional investors’ granularity for asset prices.

Some papers about institutional investors attempt to identify systemically important

institutions through their contribution/exposure to systemic risk (see, for example,Acharya,

Pedersen, Philippon, and Richardson (2017), Tobias and Brunnermeier (2016)). Our model

leads to a complementary notion of systemic assets. Trading of these assets results in large

price movements for other assets, even assets with uncorrelated payoffs, due to the cross-asset

price impact. We believe that investigating and identifying systemic assets empirically might

shed novel light on shock propagation in financial markets.

Our paper is part of the broad literature on the effects of illiquidity in financial markets.

Many papers in this literature take market frictions as exogenous, such as constant or random

trading cost, portfolio constraints, and/or assets that cannot be traded (see, Constantinides

(1986), Longstaff (2009), Amihud and Mendelson (1986), Acharya and Pedersen (2005), Duffie,

Gârleanu, and Pedersen (2005). In our model, the only friction is the fact that there is a finite

number of large traders who behave strategically. A trader is large simply because he owns

a non-negligible fraction of the aggregate wealth. Wealth effects endogenously generate (1)

portfolio constraints (due to nonnegativity of wealth), (2) illiquidity due to endogenous price

impact, and (3) systemic liquidity that is priced in the cross-section of asset returns.6

Price impact from institutional trades has been documented empirically in many pa-

pers. See, for example, Chan and Lakonishok (1995), Griffin, Harris, and Topaloglu (2003),

6Acharya and Bisin (2014) endogenize default risk using counterparty risk when positions are opaque. While
there is no counterparty risk in our model, an agent’s ability to borrow from other agents is effectively limited
by the amount of liquid wealth that he can post as collateral.
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Chiyachantana, Jain, Jiang, and Wood (2004), Almgren, Thum, Hauptmann, and Li (2005),

Coval and Stafford (2007), and Ben-David et al. (2021). In particular, Chung and Huh (2016)

find that price impact is priced and has a larger effect on returns relative to adverse selection.7

With the exception of Gabaix, Gopikrishnan, Plerou, and Stanley (2003) and Glebkin et al.

(2023), most of these papers use CARA-Normal settings, implying a linear price impact, and

none of these papers can link the empirically observed non-linearity of price impact to funding

liquidity. Our model provides a general framework for investigating such non-linearities.

Finally, we mention a related strand of the literature that considers strategic liquid-

ity provision. See, for example, Biais, Martimort, and Rochet (2000), Roşu (2009), Back

and Baruch (2013). This literature uses a discriminatory price auction as opposed to the

uniform price auction we use. However, we encounter similar technical difficulties. The multi-

dimensional nature of our problem makes the analysis even more involved. In particular, it is

challenging to prove the global optimality of candidate equilibria with multiple assets. While we

are not able to establish general equilibrium existence, we believe that the techniques developed

in our paper may be useful in other models facing similar issues.

2 The model

A number L > 2 of strategic liquidity providers (LPs) trade assets with liquidity demanders

(LDs). There are N + 1 assets, i ∈ {0, 1, 2, ..N}, k-th asset is claim to a terminal dividend δk.

Asset 0 is a risk-free asset with δ0 = 1. We assume that LDs’ aggregate trade is characterized

by the aggregate supply shock s ∈ RN that has full support8 and is independent of δ. As in

Klemperer and Meyer, our assumptions imply that equilibrium quantities will depend on the

7For papers concerned with liquidity in the presence of asymmetric information, with price determined solely
by the degree of adverse selection, see Kyle (1985), Back (1992), Foster and Viswanathan (1996), Back, Cao,
and Willard (2000), Back and Crotty (2015).

8Supply uncertainty is needed to rule out the extreme multiplicity of equilibria (cf. Klemperer and Meyer
1989; Vayanos 1999).

6



realization of s but not its distribution.9 Given initial endowment w0 of consumption good,

initial holdings q0 of assets, and after trading a portfolio q, LP’s utility depends on their post-

trade holdings of assets q0 + q and the post-trade amount of consumption good w0 − p>q. It is

given by U(q0 + q, w0 − p>q). This specification incorporates the following cases.

• General utility of terminal consumption. Agents trade at time 0, consume at time 1, and

risk-free asset is a numeraire. The vectors q and p are N × 1 vectors of quantities and

prices of risky assets. Thus, U(q0 + q, w0 − p>q) = E[u(δ>(q0 + q) + w0 − p>q)]. As a

particular case, it includes quasilinear setting: U(q, p>q) = w0 − p>q + u1(q), which, in

turn, incorporates the general CARA case studied in Glebkin et al. (2023). For example,

in the CARA-Normal case, u1(q) = µ>q − γ
2
q>Σq,

while u1(q) = − 1
γ

lnE[− exp(−γδ>q)] corresponds to generic distributions of asset payoffs.

• General utility, two consumption dates. Here p and q are (N +1)×1 vectors of prices and

quantities of all assets, including the risk-free. Agents trade at time 0 but can consume

both at time 0 and time 1.

U(q + q0, w0 − p>q) = u0(w0 − p>q)︸ ︷︷ ︸
utility from t = 0 consumption

+ E[u1(δ>(q + q0)]︸ ︷︷ ︸
utility from t = 1 consumption

– e.g., CRRA: u0(x) = u1(x) = x1−γ−1
1−γ

The utility function U = U(q, x) is assumed to be strictly concave in q and strictly

monotone increasing in x, and U ∈ C4(C) for some open set C ⊂ RN+1. We set U to be −∞

for (q, p · q) 6∈ C. We denote Y ≡ C ∩ supp{sL}.

Each agent is strategic and rationally anticipates the impact that his demand schedule

has on equilibrium prices. As is well-known (see, e.g., Klemperer and Meyer, 1989; and Kyle,

1989), equilibria in such demand- or supply-functions competition games can be found using

9While we assume that asset supply is price inelastic, it is possible to extend our results to the case of price
elastic supply of the form s(p) = s̃f(p).
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the so-called ex-post optimization. Namely, consider the optimization problem of trader i, and

suppose that other traders j 6= i submit schedules Dj(p). Denote by

D−i(p) ≡
∑
j 6=i

Dj(p)

the total residual demand of all other large investors, and suppose that D−i(p) is a bijection:

D−i : Â → D onto some open set D ⊂ RN . Let Π : D → Â denote the inverse of this map:

Π(D−i(p)) = p. Suppose first that there is no uncertainty about the asset supply for the agent

i, and he observes the realization of ε. If agent i submits a demand schedule Di(p), market

clearing implies that equilibrium prices satisfy

Di(p) = ε − D−i(p) .

Therefore, whatever demand schedule Di(p) the agent submits to the auctioneer, the realized

price-quantity pair (q, p) = (Di(p), p) always satisfy q = ε − D−i(p), which is equivalent to

p = Π(ε− q). Thus, given a known realization of ε, the agent’s optimization problem becomes

max
q∈Y: ε−q∈D

U(q , q>Π(ε− q)) , (1)

assuming that the agent is always constrained to submit demands for which there exists a

market clearing price.10 If there exists a q = q∗(ε) solving the optimization problem (1),

then the corresponding market clearing price is given by p∗(ε) = Π(ε − q∗(ε)). If the map

F : X → D defined by F (ε) = ε− q∗(ε) is bijective, then the optimal demand schedule is given

by Di(p) = q∗(F−1(D−i(p))). Importantly, this demand schedule is ex-post efficient: Even

conditional on knowing the uncertain supply realization, the investor would like to trade the

same amount.

10In models with one asset, this issue is usually dealt with by setting the price to plus or minus infinity if the
excess demand is positive or negative. That is, submitting demands for which markets do not clear is effectively
prohibited. With many assets, the sign of excess demand is not the right object to deal with, and directly
prohibiting such trades is a natural alternative.
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In this paper, we only consider regular symmetric equilibria, in which (1) all traders

submit identical demand schedules Di(p) = D(p); (2) D(p) is two times continuously differen-

tiable and corresponds to an interior optimum in (1); (3) D(p) is bijective and has an invertible

Jacobian ∂D(p) for all p ∈ Â. In a symmetric equilibrium, we necessarily have q(ε) = ε/L, and

hence the map F (ε) = (1− L−1)ε is obviously bijective, and D−i(p) = (L− 1)D(p) is bijective

if and only if so is D(p) : Â → D(Â). In this case, market clearing implies ε = LD(p), and

D = (L− 1)D(Â).

We formalize these observations in the following proposition.

Proposition 1. A pair (D(p),Y) with a demand schedule D(p) : Â → Y is a regular symmetric

equilibrium if and only if

• D ∈ C2(Â) is bijective and ∂D(p) is invertible for each p ∈ Â;

• For any ε ∈ X , we have that

ε/L = arg max
q∈Y: ε−q∈D

U(q , q>Π(ε− q)) (2)

is an interior optimum with Π(q) = D−1((L− 1)−1q) and D = (L− 1)D(Â).

Everywhere in the sequel, we will refer to a symmetric equilibrium satisfying the prop-

erties of Proposition 1 as to simply an “equilibrium.”

3 Equilibirum characterization

Based on Proposition 1, we will solve for equilibria of this game in the following three steps:

(i) derive equations for candidate equilibria using first order conditions for the maximization

problem (2), and then solve these equations for some important specifications of the model;

(ii) prove that equilibrium demand is indeed bijective; (iii) prove that the solution to the first
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order condition is indeed the global maximizer in (2). As we will see below, step (iii) is the

most involved and often requires imposing additional technical asumptions.11

Everywhere in the sequel, we use ∇q to denote the gradient with respect to q. Assuming

that the maximum in (2) is attained at an interior point and differentiating (2) with respect to

q, we get

∇qU(q, q · Π(ε− q)) + Ux(q, q · Π(ε− q)) (Π(ε− q)− ∂Π(ε− q) q) = 0 ,

where ∂Π denotes the Jacobian of the map Π. In equilibrium, we have ε/L = D(p) = q and

Π(ε− q) = p. Hence, we get

∇qU(D(p), D(p) · p) + Ux(D(p), D(p) · p) (p− (∂Π|(L−1)D(p))
T D(p)) = 0 ,

where AT denotes the transpose of a matrix A. This first order condition can be rewritten as

p = −[Ux(D(p), D(p) · p)]−1∇qU(D(p), D(p) · p) + ∂Π|(L−1)D(p))
T D(p)

By market clearing, in a symmetric equilibrium, we always have D(p) = ε/L, and we arrive at

the following result.

Proposition 2. Provided that an equilibrium exists, inverse demands I(q) satisfy

I(q) = −
∇U

(
q, q>I(q)

)
Ux (q, q>I(q))

− Λ (q) q, (3)

for every q ∈ Y. The equilibrium prices are given by p = I(ε/L) and the equilibrium price

impact matrix Λ(q) satisfy

Λ(q) = − 1

L− 1
∇ I(q). (4)

11It is known (see, e.g., Back and Baruch, 2013; Baruch and Glosten, 2016) that first order conditions are
often insufficient for a local extremum to be the global optimum in games of strategic liquidity provision.
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We emphasize several important implications of Proposition 2. First, (3) and (4) give

a system of nonlinear Partial Differential Equations (PDEs) for the vector of inverse demands

I(q). No known general techniques exist for solving such complex systems. In the single asset

case, (3) and (4) boils down to a single Ordinary Differential Equation (ODE)

I(q) = −
Uq
(
q, q>I(q)

)
Ux (q, q>I(q))

+
qI(q)′

L− 1
(5)

As we now show, it is possible to reduce the general multi-asset problem to solving the single-

asset problem at a portfolio level. To this end, we define effective inverse demand for a given

portfolio q. Namely, we define ι(t; q) to be the amount a trader is willing to pay for per unit

when acquiring t units of a portfolio q. That is, ι(t; q) = q>I(tq).

To gain some intuition behind our approach, consider an economy in which all investors

(including LDs) can trade only a single index (portfolio) q ∈ RN . We refer to this as a restricted

economy and to our baseline case as an unrestricted economy. Then, ι(t) represents the inverse

demand that LPs submit for t > 0 units of the index. Since the restricted economy is a one-

asset economy, ι(t) must satisfy the ODE (5). Now consider the unrestricted economy. In the

symmetric equilibrium, for supply shock realizations s = tq (t ∈ R+), it should be optimal for

LPs to absorb 1/L fraction of supply shock s—that is, to trade t/L units of portfolio q. Hence,

the price LPs bid for t/L units of portfolio q in the unrestricted economy, or q>I(t/Lq), should

be an optimal bid in the restricted economy. Therefore, q>I(t/Lq) = ι(t/L) should satisfy ODE

(5). Note that ι(1) = q>I(q) is the expenditure E(q) for portfolio q (i.e., the dollar amount

spent on buying the portfolio q). Once E(q) is known, we can complete the computation by

plugging ι(1) = q>I(q) into (3). We now summarize this discussion in the following proposition.

Proposition 3. The inverse demand I(q) satisfies (3) and (4) if and only if

I(q) = 1/L · ∇E(q)− (1− 1/L)
∇U(q, E(q))

Ux(q, E(q))
, (6)
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where the function

E(q) = q>I(q) (7)

can be computed as follows. First, let ι(t) = ι(t; q;α) be the unique solution to the following

ODE

ι(t) = −q
>∇U (tq, tι(t))

Ux (tq, tι(t))
+
tι(t)′

L− 1
, (8)

with the boundary condition f(1; q, α) = α. Then, E(q) = f(|q|; q/|q|; ρ(q/|q|)) , where ρ(x) is

an arbitrary smooth function on the unit sphere {q ∈ RN : |q|= 1} with |q|≡ (q · q)1/2 .

The equilibrium characterization of Proposition 3 leaves open an important question:

Since there are multiple candidate equilibria (each corresponding to a different boundary con-

dition ρ(q), how do we know which one of them corresponds to an equilibrium? Can there

be multiple equilibria? And, if there is a unique equilibrium, how can we compute it? As we

show below, it is indeed possible to find a unique equilibrium if we impose a natural economic

monotonicity condition.

3.1 Equilibrium uniqueness

In order to understand the structure of the unique equilibrium we characterize, we first introduce

the competitive inverse demand, Ic(q), defined as a solution to:

Ic(q) = −
∇U

(
q, q>Ic(q)

)
Ux (q, q>Ic(q))

. (9)

Intuitively, we expect equilibrium inverse demands to converge to the competitive one when

L → ∞. Hence, Ic(q) is the natural primary object in our model, and we formulate our

restrictions on asset payoffs, δ, and the utility, U(·, ·) directly in terms of conditions on Ic(q).

These conditions can be easily verified for each particular example we are going to consider

later on.
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Denote by Ỹ the set of all q ∈ Y for which {t > 0| tq ∈ Y} is unbounded. Let also

ιc(t) = q>Ic(qt) be the competitive bid for a portfolio q as. By (9), it satisfies

−q
>∇U(tq, tιc(t))

Ux (tq, tιc(t))
= ιc(t).

We will need the following technical assumptions.

Assumption 1. For every q the function ιc(t) is strictly decreasing in t for t large enough.

Intuitively, Assumption 1 simply says that the standard “law of demand” holds.12 The

next condition imposes a form of regularity on the competitive inverse demand, allowing us to

exclude unbounded equilibria with “explosive” behavior.

Assumption 2. For every q, the function ιc(t) is bounded for t large enough and, for every q,

the function − q>∇U(tq,x)
Ux(tq,x)

is decreasing in x for t large enough.

The following lemma presents a sufficient condition for the validity of Assumption 2.

Lemma 1. Assumption 2 holds for U(q, x) = E [u(w0 − x+ δ(e+ tq))] if δ is bounded and the

absolute risk aversion R(x) = −u′′(x)/u′(x) is decreasing in x.

Everywhere in the sequel, we focus on equilibria satisfying the law of demand: The fact

that ι(t) is monotone decreasing and bounded for large t. It turns out that the equilibrium is

unique under these natural economic restrictions.

Proposition 4. Under Assumptions 1 and 2, there exists at most one equilibrium in which

equilibrium demand ι(t) is strictly decreasing and bounded for every q ∈ Ỹ. It can be constructed

as follows. For every M > 0 define ιM(t) a solution to (8) with a boundary condition ιM(M) =

ιc(M). The equilibrium demand is ι(t) = limM→∞ ι
M(t).

12There is a large literature that formulates conditions on the utility function, ensuring that the law of demand
holds. (E.g., Quah (2003)) It is beyond the scope of our paper to look for conditions on utility beyond those
established in the existing literature.
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Proposition 4 is crucial for the subsequent analysis. The technical conditions requiring

that the effective demand for a portfolio q is bounded and strictly decreasing in the competitive

case are natural and intuitive. If δ has bounded support, then the potential benefit one can

derive from holding portfolio q should be bounded. We verify these restrictions in all examples

studied below. Given the above discussion, it is also natural to focus on equilibria with strategic

demands being downward-sloping and bounded as well. Proposition 4 ensures that there is at

most one such equilibrium.

3.2 Comparative statics

The explicit characterization of the unique equilibrium in Proposition 4 allows us to apply

methods from the theory of ordinary differential equations (comparison theorems) to derive

comparative statics results for the equilibrium behavior. Let us rewrite the ODE (8) as

tι(t)′

L− 1
= ψ(t, ι(t); k), (10)

where k indicates a generic parameter (for example, initial endowment, w0), and

ψ(t, ι; k) ≡ ι(t) +
q>∇U (tq, tι; k)

Ux (tq, tι; k)
. (11)

Note that, by (9), competitive demand ιc(t) satisfies

ψ(t, ιc(t); k) = 0.

We make the following assumption.

Assumption 3. ψt(·) > 0 and ψι(·) > 0.

This assumption implies that the competitive demand is downward sloping because,

according to the Implicit Function Theorem, ιc(t)′ = −ψt(·)/ψI(·).
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Proposition 5. Suppose that U(tq, x) = u0 (w0 − x) + E
[
u1(w1 + tq>δ)

]
. Moreover, assume

that Inada conditions hold for the function u0. Then for equilibrium expenditures, E(q;w0) =

q>I(q;w0), we have ∂
∂w0

E(q;w0) ≥ 0 and ∂
∂w1

E(q;w1) ≤ 0.

Proposition 5 implies an intuitive relationship between optimal expenditures, E(q), and

funding liquidity, as captured by the endowment, (w0, w1). A larger initial endowment w0

naturally increases the agent’s willingness to spend, leading to higher prices and, as a result, a

lower illiquidity discount. By contrast, an increase in the time 1 endowment has the opposite

effect on the asset demand. Indeed, the demand for assets is pinned down by the marginal rate

of intertemporal substitution. If the agent already has enough endowment at time 1, there is

no need to reallocate wealth from time zero.

The next proposition considers the comparative statics of our first measure of illiquidity,

bid shading, which is a difference between the competitive and non-competitive demands:

BS(t) ≡ Icq(t)− ι(t).

Proposition 6. [Bid Shading and Funding Liquidity] Suppose that U(tq, x) = u0 (w0 − x) +

E
[
u1(w1 + tq>δ)

]
. Let RRAi(c) = −cu′′i (c)/u′i(c), i = 0, 1. Suppose that RRA0(c0) = RRA1(c1) =

γ > 1 . Then ∂
∂w0

BS(t;w0) > 0.

The technical condition of RRA above one implies a small elasticity of inter-temporal

substitution (EIS) between consumption at different time periods. However, at the same time,

a larger risk aversion makes LPs’ demand functions less elastic. Strikingly, the second effect

always dominates: Larger endowment makes the agents more strategic, increases price impact

and, as a result, leads to a drop in market liquidity, as manifested by an increase in bid shading.
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4 Consumption-CAPM with Strategic Trading with Wealth

Effects

In this section, we consider a general class of utilities U(q, x) = u0(w0−x)+u1(q) that is separa-

ble in expenditures, x, and portfolio, q. This is a standard AP setting used in consumption-based

asset pricing models. Although this setting might seem different from the CARA-normal setting

with a utility from terminal wealth commonly used on market microstructure and Rational Ex-

pectations Equilibrium models,13 it actually does contain the generic CARA setting described

in Glebkin et al. (2023) because it reduces to a quasi-linear utility specification w0−q>p + u1(q),

where u1(q) is the cumulant-generating function of δ. We start this section with a statement of

the equilibrium characterization for the quasi-linear case.

Proposition 7. [Glebkin et al. (2023)] Suppose that v is uniformly bounded and concave. Then,

there exists a unique equilibrium and the equilibrium inverse demand and price impact are given

by

I(q) =
L− 1

L

∫ ∞
1

z−L

L
∇v
(
−L− 1

L
zq

)
dz, (12)

Λ(q) =
(L− 1)2

L

∫ ∞
1

z1−L

L− 1
∇2v

(
−L− 1

L
zq

)
dz, (13)

The equilibrium price is p = I(ε/L). Moreover, the equilibrium price impact matrix has the

following properties:

• Price impact is not affected by investors’ wealth: ∂Λ
∂w0

= 0.

• Price impact matrix is symmetric, i.e. Λij = Λji for all j and i.

• Price impact matrix is positive-definite, in particular, Λii > 0 for all i.

Proposition 7 characterizes key theoretical properties of the price impact matrix in the

13The common assumption is these models is that the numeraire good is storable, so that w0 − q>p can be
brought to t = 1 and consumed at that moment in time.
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absence of wealth effects: Price impact behaves like a covariance matrix, consistent with stan-

dard CARA-Normal models. Our next theoretical result derives the implications of strategic

trading for the cross-section of stock returns in the form of liquidity-adjusted Consumption

CAPM. The following is true.

Proposition 8. Provided that the equilibrium exists, the following liquidity-adjusted consump-

tion CAPM holds: The expected return on any asset is given by

E [Ri]−Rf = βi (E [Rq]−Rf )−Rf

Λ%
qq

1 + Λ%
rf q

(
βi − βλi + βλrf (1− βi)

)
, (14)

where, given the equilibrium allocation q = ε/L, we have Ri = E
[
δi
pi

]
, Rq = E

[
q>δi
q>p

]
, βi =

cov(u′1(δq),Ri)
cov(u′1(δq),Rq)

, βλi =
Λ%
iq

Λ%
qq

, Λ%
iq = 1>i Λ(q)q/pi, Λ%

qq = q>Λ(q)q/(q>p) for i = {rf , 1, .., N}. If traders

do not take the price impact into account, then we have the following C-CAPM:

E [Ri]−Rf = βi (E [Rq]−Rf ) . (15)

The formula (14) shows that, in equilibrium, asset excess returns behave as if they had

a multi-factor structure, as in Acharya and Pedersen (2005), with fundamental consumption

betas and liquidity betas. However, in contrast to the reduced form approach in Acharya and

Pedersen (2005), in our model, this “liquidity risk” arises endogenously, due to the strategic

behavior of investors. To understand the nature of two two-factor cross-sectional asset pricing

model, we rewrite (14) as

E [Ri]−Rf = α + βi λ1 + βλi λ2 (16)
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where

α︸︷︷︸
aggregate illiquidity discount

= −Rf

Λ%
qq

1 + Λ%
rf q

βλrf

λ1︸︷︷︸
fundamental risk premium

= E [Rq]−Rf︸ ︷︷ ︸
market risk premium

− Rf

Λ%
qq

1 + Λ%
rf q

(1− βλrf )︸ ︷︷ ︸
illiquidity correction

λ2︸︷︷︸
co−illiquidity premium

= Rf

Λ%
qq

1 + Λ%
rf q

(17)

The first surprising implication of our findings is the emergence of α, reflecting the illiquidity

of the risk-free asset, a novel effect that cannot emerge in the CARA setting of Glebkin et al.

(2023) (in this case, Λ is a covariance matrix and, hence, βλrf = 0). It implies that the risk

premium should be evaluated against the illiquidity-adjusted risk-free rate, Rf + α. One could

interpret α as a form of (in)convenience yield (Krishnamurthy and Vissing-Jorgensen, 2012)

associated with its illiquidity (Doerr et al., 2023). Second, the fundamental risk premium

should itself be corrected for illiquidity. This has important implications for statistical tests of

CAPM: Cross-sectional asset pricing tests will generate a risk premium that is different from

the market excess return. Finally, the third novel implication of our asset pricing model is

the emergence of the co-illiquidity premium. Namely, asset returns get discounts depending on

their systemic importance in the price impact matrix Λ. To understand the role of co-illiquidity,

we note the following algebraic identities:

βMKT
i =

Cov(δi, δ
>, q)

Var(δ>q)
=

1>i Σq/pi
q>Σq/(q>p)

βλi =
1>i Λ(q)q/pi

q>Λ(q)q/(q>p)
.

(18)

We observe a clear similarity between βMKT
i (β with respect to the market) and βλi , defined

through the co-illiquidity (instead of covariance) with the market portfolio q, whereby we replace

the fundamental covariance matrix Σ with the price impact matrix Λ(q). The co-illiquidity

defines how much the price of the market portfolio moves when we trade a unit of the asset i.

In the CARA case of Glebkin et al. (2023), Λ is proportional to Σ and hence is symmetric: The
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cross-impact of asset i on asset j is the same as the impact of asset j on asset i. By contrast,

in our model, it is not, and it can even be asymmetric, implying that some assets are systemic

and trading them can have a large impact on other assets in the economy. The next proposition

characterizes precisely when this asymmetry occurs in equilibrium.

Proposition 9. The following is true for the asymmetry in price impact, defined as Λ(q) −

Λ>(q) :

Λ(q)− Λ>(q) ∝ u′′0(q)

u′0(q)

(
∇u1(q)I(q)> − I(q) (∇u1(q))>

)
. (19)

Consequently, Λ(q) is symmetric if and only if one of the following two conditions hold: (1)

u0(x) is linear in x; (2) I(q) ∝ ∇u1(q).

Proposition 9 shows how wealth effects are crucial for the emergence of price impact

asymmetry. Case (1) in Proposition 9 occurs in the quasi-linear case of Glebkin et al. (2023)

where initial funding liquidity, w0, is irrelevant for investors. Case (2) is more subtle and requires

a precise understanding of the utility function u1. It is straightforward to show that, for generic

utility functions, I(q) is not proportional to ∇u1(q) and, hence, wealth effects typically make

price impact asymmetric. In the sections below, we derive closed-form solutions for equilibrium

for some special choices of the utility functions.

5 Unit-Elastic Preferences

Throughout this section, we make the following assumption.

Assumption 4. The elasticity of inter-temporal substitution (EIS) equals one so that u0(x) =

log x. Furthermore, the function u1(q) satisfies û1(q) > −(1− ε) for some ε > 0, and is defined

on a domain V ⊂ RN that is conic: if q ∈ V then ρq ∈ V for all ρ ≥ 1.

We also let

c =
L− 1

L
. (20)
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The following is true.

Lemma 2. Under Assumption 4, the unique equilibrium is given by

E(q) = w0

∫ ∞
1

e−
∫ s
1
cû1(ρ

1/Lq)+1
ρ

dρ ds

s
(21)

We can now study the behavior of the equilibrium price impact.

Lemma 3. When L is large enough, the equilibrium price impact Λ∗(q) converges to

lim
L→∞

Λ(q) =
1

1 + û1(q)

(
−∇2u1(q) +

1

1 + û1(q)
(∇u1(q) +∇2u1(q) q)∇u1(q)T

)

uniformly on compact subsets of V .

Suppose now that the agents have Epstein-Zin (1989) preferences with risk aversion γ

so that

u1(q) =
1

1− γ
logE[(w + δ · q))1−γ] ,

where we have absorbed the payoff of the potential initial holdings into the random endowment

w.14 Then, u1(q) satisfies the conditions of Assumption 4 if V is such that δ · q > 0 for all q ∈ V

(for example, if δ > 0 and q ∈ RN
+ ), and the following is true.

Proposition 10. If w ≤ 0, then q · Λ(q)q < 0.

The result of Proposition 10 stands in perfect agreement with the conventional wisdom:

When w ≥ 0, traders submit demand schedules that are downward sloping. As a result, each

trader faces positive trading costs and shades the bid accordingly, implying that markets clear

at prices below their frictionless level. However, quite strikingly, this result is not anymore true

when the endowment can take negative values. In this case, the agent desperately needs to

14Since markets are incomplete due to price impact, the random endowment is effectively unspanned, even if
w is a linear combination of tradable asset payoffs.
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buy assets that cover the liabilities at time t = 1, leading to a negative realized price impact

q · Λ∗(q)q.

In the absence of endowment at time t = 1 and with logarithmic preferences,

u1(q) = E[log(δ · q)] ,

a direct calculation implies that the price impact Λ∗ is

Λ(q) =
c

1 + c
w0E

[
1

(δ · q)2
δδT
]

In this case, the price impact is positive definite, and symmetric. Both price level and price

impact are proportional to w0, so that the percentage price impact is independent of wealth.

One surprising consequence of this formula is the fact that price impact is non-zero even for

the risk-free asset: If δ0 = 1, we get

Λrf (q) =
c

1 + c
w0E

[
1

(δ · q)2

]
(22)

Furthermore, trading the risk-free asset (e.g., through quantitative easing or tightening) affects

prices of all other assets proportionally to their expected payoffs:

Λrf ,i(q) =
c

1 + c
w0E

[
1

(δ · q)2
δi

]
. (23)

6 Liquidity Shortage

In this section, we study the case when investors are highly constrained in their funding liquidity

and need to sell assets in order to replenish their liquid reserves. Formally, we assume that w0 =

0. Furthermore, throughout this section, we assume that inter-temporal preferences exhibit a

21



constant elasticity of inter-temporal substitution (CEIS) given by 1/γ, so that

u0(x) =
x1−γ

1− γ
.

In addition, we will make the following technical assumption.

Assumption 5. The function u1(q) is defined on a set V such that tV ⊂ V for all t ∈ (0, 1].

In this case, the following is true.

Proposition 11. Suppose that w0 = 0 and u0(x) = x1−γ

1−γ and that γ > 1. Then, the function

H(q) = E(q)1−γ satisfies

(1− c)(1− γ)−1q · ∇H(q) − H(q) = cû1(q)

and hence

H(q) =
c

β

∫ 1

0

t−1−1/βû1(qt)dt

with

β =
1− c
1− γ

.

We can now characterize the equilibrium price impact.

Lemma 4. We have

Λ(q) = (H(q))
γ

1−γ

(
∇2S(q) +

γ

1− γ
∇H(q)

H(q)
(β∇H(q) − c∇u1(q))T

)
(24)

and converges to

lim
L→∞

Λ(q) = [−û1(q)]γ/(1−γ)

(
−∇2u1(q) +

γ

1− γ
1

(−û1(q))
(∇u1(q) +∇2u1(q)q)(∇u1(q))T

)

when L→∞.
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Suppose now that the agents have standard, time-separable CRRA preferences, so that

u1(q) = (1− γ)−1E[(w + δ · q)1−γ] , û1 = E[δ · q(w + δ · q)−γ]

for some positive random endowment w > 0. Suppose also that δ > 0. Due to liquidity shortage,

the agents will be forced to sell some of the claims on δ against parts of their endowment w.15

Let V = {q ∈ RN
− : w + δq > 0} denote the set of admissible portfolios that can be sold while

keeping the consumption positive. In this case, Assumption 5 clearly holds, and equilibrium

price impact takes the form

lim
L→∞

Λ(q) = γE[δδT (w+δ ·q)−γ−1] +
γ

γ − 1

E[δ(w + δ · q)−γ]
E[(δ · q)(w + δ · q)−γ]

E[δT
w + (1− γ)δ · q
(w + δ · q)γ+1

] (25)

In particular, the cost of selling the portfolio −q is given by

q · Λ(q)q = − 1

γ − 1

(
E[(δ · q)2 (w + δ · q)−γ−1] + γE[(−δ · q) (w + δ · q)−γ]

)
< 0 .

As a result, the price of the portfolio (−ε)/L that all agents sell in equilibrium is above the

frictionless level due to an illiquidity premium. This result stands in stark contrast to the

CARA case studied in Glebkin et al. (2023): When price impact is positive, prices always

contain an illiquidity discount. The mechanism underlying this surprising result is based on

a simple wealth effect. Namely, in the presence of liquidity shortage, agents’ demand curves

are upward sloping because, when prices drop, agents sell even more of the assets in order to

increase their time-zero consumption from zero to an optimal level. As a result, markets clear

even before the prices have a chance to reach their competitive levels. At the same time, it

is possible to show that exactly N − 1 eigenvalues of price impact (25) are positive, and they

are non-monotonic in w. In particular, an increase in the funding liquidity (as measured by

w) can lead to an increase in the price impact and hence to a drop in the market liquidity.

15For example, w can be just a portfolio x of tradable assets, w = x · δ, with some x ∈ RN
+ .
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This shows that the conventional monotonic relationship between two forms of liquidity (as in

Brunnermeier and Pedersen (2009)) may fail to hold in the presence of wealth effects. We also

note that the price impact matrix (25) exhibits very strong asymmetries due to wealth effects.

In the rest of the section, we investigate the behavior of our closed-form solution (11)

for finite L. The following is true.

Lemma 5. We have

H(q) = −(γ − 1)(L− 1)

(γ − 1)L+ 1
E

[
(δ · q)w−γ 2F1

(
γ, L(γ − 1) + 1;L(γ − 1) + 2;−δ · q

w

)]
,

where 2F1(a, b; c, z) is the Hypergeometric function.

Substituting this closed-form expression into (24), we can study the behavior of the

equilibrium price impact and its dependence on various model parameters. The two explicit

examples we consider are devoted to the two key novel properties arising due to wealth effects:

Breakdown of positive definiteness and asymmetry.

Suppose first that there is only a single risk-less asset, and the endowment w is non-

random. Then,

H(q) = −(γ − 1)(L− 1)

(γ − 1)L+ 1
q w−η 2F1

(
η, L(γ − 1) + 1;L(γ − 1) + 2;− q

w

)
.

Figures 1 and 2 show the price impact Λ that occurs in equilibrium:

Λ
(

(L− 1)
ε

L

)
.

We can see that the price impact is negative, which represents a departure from the CARA

case, as we previously discussed. We observe that the price impact decreases (becomes more

negative) in the endowment level w: The illiquidity premium is higher when agents can pledge

a larger amount of wealth because the desire to smooth consumption over time increases the
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demand for liquidity at time t = 0. It also increases the coefficient of risk aversion: When γ is

large, the marginal value of time t = 1 consumption is higher, and the agent is less interested

in allocating wealth towards t = 0.

(a) L = 3, fl = 2 (b) w = 2; fl = 2

(c) w = 2; L = 3

(d) w = 2; L = 3

Figure 1: Price Impact We plot Λ for different values of q. Parameters: γ = η = 2
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We now proceed to investigate the asymmetry of price impact. We assume that there are

N states of the world s1, · · · , sN and that the N securities traded are Arrow-Debreu securities.

Then,

H(q) =
N∑
i=1

p̄ih(qi, wi; γ, η, L) ,

where p̄i is the probability that state si will occur at time t = 1 and

h(x, y; γ, η, L) ≡ −(γ − 1)(L− 1)

(γ − 1)L+ 1
x y−η 2F1

(
η, L(γ − 1) + 1;L(γ − 1) + 2;−x

y

)
,

To illustrate the asymmetry, we consider N = 2. Figure 3 shows the ratio

Λ12

Λ21

.

We see that the ratio is different from one even when both states of the world are equally

likely, and there is no uncertainty associated with time t = 1 wealth (Figure 3 (a)). The

asymmetry is not generated by having a state of the world more likely to occur than the other

one (Figure 3 (b)). Wealth uncertainty is an important factor determining this asymmetry

(Figure 3 (c) and (d)): The asset that pays in low-wealth states is systematic: That asset has a

higher impact on the liquidity (and hence the price) of other assets. Such assets are commonly

viewed as “safe,” and a large amount of literature investigates the demand for safety. See, for

example, Gorton and Ordonez (2022). The striking implication of our results is that contrary

to conventional wisdom, safe assets are more illiquid because they have a larger price impact.
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7 Wealth Inequality

In the previous sections, we study symmetric equilibria in economies populated by a finite num-

ber of identical agents. In general, investigating asymmetric equilibrium with heterogeneous,

strategic agents is an extremely complex problem that is reduced to solving systems of partial

differential equations. However, it is still possible to solve for asymmetric equilibria analyt-

ically when the nature of heterogeneity is sufficiently simple. In this section, we investigate

asymmetric equilibria for the case when agents only differ in their initial wealth and have log

preferences.16 Namely, throughout this section, we make the following assumption.

Assumption 6. The economy is populated by L agents, with agent i maximizing a constant

elasticity of substitution utility

Ui(q, x) = u(αiw0 − x) + u1(q)

with u(c) = log(c) and u1(q) = e−ρE[log(δ · q)]. The weights αi > 0 add up to one,
∑

i αi = 1.

Thus, αi is the fraction of the aggregate endowment that the agent i owns.

Assumption 6 implies agents only differ with respect to their initial wealth. In the

competitive case, equilibrium demand functions satisfy the first-order conditions

∇V (Di(p)) = u′(αiw0 − p ·Di(p)) p ,

and the assumed homogeneity immediately implies that Di(p) = αiD(p) for some function

D(p) satisfying ∇V (D(p)) = pu′(w0 − p ·D(p)) . Therefore, intuitively, we expect that in the

non-competitive case, agents’ demand functions will only differ up to scaling in the sense of the

following definition.

16While one might conjecture that our analysis should extend to the more general case of CRRA preferences,
this is actually not the case.

27



Definition 1. An equilibrium tuple (Di(p))
L
i=1 of demand schedules is scale-symmetric if there

exists a schedule D(p) and a tuple of constants βi, i = 1, · · · , L such that Di(p) = βiD(p), i =

1, · · · , L . A regular scale-symmetric equilibrium is such that the demand schedule D(p) is two

times continuously differentiable, bijective, has an invertible Jacobian ∂D(p) for all p ∈ Â, and

corresponds to an interior optimum in

max
q: ε−q∈D

Ui(q , q · Πi(ε− q)) , (26)

where we have defined

D−i(p) ≡
∑
j 6=i

Dj(p)

and Πi : D → Â denotes the inverse of this map: Πi(D−i(p)) = p.

The following proposition is a straightforward extension of Proposition 1.

Proposition 12. A set of demand schedules {Di = βiD(p), i = 1, · · · , L} with D(p) : Â → RN

is a regular scale-symmetric equilibrium if and only if

• D ∈ C2(Â) is bijective and ∂D(p) is invertible for each p ∈ Â;

• For any ε ∈ X , we have that

ηi ε = arg max
q: ε−q∈D

Ui(q , q · Πi(ε− q)) where ηi =
βi∑
j βj

, (27)

is an interior optimum with Πi(q) = D−1((β − βi)−1q).

Let

β ≡
∑
i

βi . (28)

The following is true.
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Proposition 13. There exists a unique scale-symmetric equilibrium satisfying Di(p) = βiD(p)

with

D−1(x) = w0e
−τE[(δ · x)−1δ] .

In equilibrium, prices are given by

p = βw0E
[
(ε · δ)−1 δ

]
. (29)

while individual price impacts satisfy

Λi(q) = (β − βi)w0E
[
(δ · q)−2δδT

]
.

The scaling constants βi are given by

βi =
2αie

−τβ

αie−τ + (1 + e−τ ) β +
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
,

where β is the unique solution to

L∑
j=1

2αje
−τ

αje−τ + (1 + e−τ ) β +
√

[αje−τ − β (1− e−τ )]2 + 4β2e−τ
= 1 . (30)

Finally, the coefficients βi are monotone increasing in αi.

We would now like to use the explicit solution of Proposition 13 to study how the

economy’s oligopolistic structure influences equilibrium allocations and efficiency. After the

2007-2009 financial crisis, some economists and policymakers suggested that breaking up the

largest banks and financial institutions would make them less systemically important and lead

to more efficient markets. At the same time, the dynamics of the banking industry have been

going in the opposite direction over the past decades, with mergers and acquisitions making
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the banking industry increasingly concentrated.17 Furthermore, Ben-David et al. (2021) argue

that the nature of institutional investors is granular, and they cannot be simply split. We

investigate two different scenarios in our model. The first one is that of a “merger,” in which

two large investors merge into one investor with the total endowment equal to the sum of

individual endowments. Another one is a breakup scenario whereby a large investor is split into

two smaller investors. We would like to understand the impact of such changes on efficiency

and welfare; if a breakup is optimal, we can study how it needs to be implemented (that is,

which fractions of the original endowment should the split parts inherit).

Proposition 14. Let α = {αi}Li=1 be an initial distribution of wealth with L ≥ 3 and consider

a break-up ᾱ = {ᾱi}L̄i=1 of α with18

L̄ = L+ 1; ᾱi = αi, i < L; and ᾱL = y; ᾱL+1 = αL − y; y ∈ (0, αL) .

Then,

p < p̄

where p and p̄ are the equilibrium prices under wealth distributions α and ᾱ, respectively. In

addition, the highest p̄ is achieved when the trader has been broken up is split into two equal

traders; that is when

y =
1

2
αL .

Suppose that i < L (that is, trader i was left unchanged). Then,

U∗i,α > U∗i,ᾱ .

17For example, according to Wheelock and Wilson (2012): ”...in 2001, the five largest commercial banks held
30 percent of total U.S. banking system assets, topped by Bank of America, which had $552 billion of assets.
By contrast, in 2011, the five largest banks held 48 percent of total system assets. Four banks had total assets
in excess of $1 trillion, and the largest commercial bank, JPMorgan Chase Bank, had $1.8 trillion of assets,
equal to 14 percent of the total assets of all U.S. commercial banks.”

18Thus, we are breaking the Lth trader into two, with respective sizes ᾱL,1 and ᾱL,2.
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where U∗i,α and U∗i,ᾱ are the equilibrium utilities for Trader i under wealth distributions α and

ᾱ, respectively.

Proposition (14) shows that the break-up (respectively, merging) of two large traders

results in lower (resp. higher) welfare for the remaining traders. The reason is that prices are

higher post-break up, and this income effect dominates and results in lower wealth.

Proposition 15. Suppose that (α̂i) ≺ (αi) in the sense of second-order stochastic dominance

(SOSD). Then, p((αi)) > p((α̂i)).

Proof. The proof follows because (α̂i) obtains from (αi) through a sequence of mean-preserving

spreads applied to pairs of agents (see, Rothschild and Stiglitz (1978)).

Thus, the fire sale discount is larger when wealth is more unevenly dispersed.

8 Conclusion

We develop a novel analytical framework for studying strategic liquidity provision in the pres-

ence of wealth effects. We show how finding the unique equilibrium reduces to solving a single

ordinary differential equation that is sufficiently tractable, allowing us to derive general com-

parative statics results. We show that the setting with wealth effects (non-quasi-linear utilities)

leads to several surprising phenomena that have no analogs in the simpler CARA models (see,

e.g., Glebkin et al. (2023)) studied in the literature so far.

While our setting is stylized, it allows us to address several important and realistic

aspects of the functioning of modern markets that are dominated by large financial institutions.

In particular, consistent with recent empirical evidence Doerr et al. (2023), we find that (a)

safe assets can be more illiquid; (b) riskless assets can be illiquid and trade with an illiquidity

premium; (c) wealth heterogeneity matters. Our model also allows us to investigate the role of

the granularity of institutional investors and the impact of changes in the oligopolistic structure
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originating from mergers and acquisitions. Our results open a new perspective on the classic link

between market and funding liquidity Brunnermeier and Pedersen (2009) and have important

policy implications. In markets dominated by strategic traders, open market interventions such

as quantitative easing (QE) Benford, Berry, Nikolov, Young, and Robson (2009) may have

unexpected consequences due to the subtle, non-linear, and non-monotonic impact of QE on

market liquidity. Furthermore, the presence of systemic assets and the fact that safe assets are

systemic have concrete implications for the nature of assets a central bank should use during

interventions. We leave the analysis of these important questions for future research.

Appendices

A Proofs

Proof of Lemma 1. We have

ιc(t) = −q
>∇U(tq, tιc(t))

Ux (tq, tιc(t))
=
E
[
u′(w0 − tιc(t) + δ>(e+ tq))q>δ

]
E [u′(w0 − tιc(t) + δ>(e+ tq))]

.

If δ is bounded, then there exist q>δ and q>δ such that q>δ ≤ q>δ ≤ q>δ. Then

q>δ ≤
E
[
u′(w0 − tιc(t) + δ>(e+ tq))q>δ

]
E [u′(w0 − tιc(t) + δ>(e+ tq))]

≤ q>δ

The second claim follows from Lemma 6 below.

Lemma 6. Let e = 0. The function

v(q, x) =
E
[
u′(w0 − x+ δ>q)q>δ

]
E [u′(w0 − x+ δ>q)]

is monotone increasing (decreasing) in x if so is absolute risk aversion R(x) = −u′′(x)/u′(x).

32



Proof of Lemma 6. We have

vx(q, x) =
−E[u′′(w0 − x+ δ>q)q>δ]E

[
u′(w0 − x+ δ>q)

]
+ E

[
u′′(w0 − x+ δ>q)

]
E
[
u′(w0 − x+ δ>q)δ>q

]
E [u′(w0 − x+ δ>q)]2

We introduce a new measure with the density u′(w0−x+δ>q)/E[u′(w0−x+δ>q)]η(δ). Denote

by E∗ expectations under this new measure. Then, the required positivity is equivalent to

−E∗[δ>q]E∗[R(δ>q − x+ w0)] + E∗[R(δ>q − x+ w0)δ>q] > 0 ,

where

R(x) = −u′′(x)/u′(x) .

The result follows from the standard correlation inequality.

A.1 Reduction to Integral Equation

Proposition 16. ι(t) solves (8) if and only if it solves

ι(t) = k tL−1 + (L− 1)

∫ ∞
1

ξ−Lf(tξ)dξ , (31)

where

f(t) = −q
>∇U (tq, tι(t))

Ux (tq, tι(t))
(32)

for some k ∈ R.

Proof. We have

ι′(t) = (L− 1)t−1ι(t) − t−1(L− 1)f(t) , (33)

and the standard variation of constants formula implies any solution to this linear ODE is given
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by

ι(t) = tL−1k + tL−1(L−1)

∫ ∞
t

y−(L−1)y−1f(y)dy = {y = tξ} = tL−1k + tL−1(L−1)

∫ ∞
1

(tξ)−(L−1)(tξ)−1f(tξ)tdξ

and the claim follows.

Lemma 7. Suppose that U(q, x) = E
[
u(w0 − x+ δ>(e+ tq))q>δ

]
. Then,

f(t) =
E
[
u′(w0 − tι(t) + δ>(e+ tq))q>δ

]
E [u′(w0 − tι(t) + δ>(e+ tq))]

If the support of δ is bounded, ‖δ‖≤ K, then |f(t)| ≤ K‖q‖.

Suppose now that L > 2. Then, any bounded solution i(t) to (8) satisfies the integral

equation

ι(t) = (L− 1)

∫ ∞
1

ξ−Lf(tξ)dξ , (34)

Proposition 17. Let

g(t, x) = −q
>∇U (tq, tx)

Ux (tq, tx)
. (35)

Suppose that gx < 0 and that for each t > 0 there exists a constant K(t) > 0 such that

gt(tξ, x) ≥ K(t) for all x < ιc(tξ). Then, we have

ι(t) = ιc(t) + (L− 1)−1φ(t) + O((L− 1)−2) (36)

with

φ(t) =
t(ιc(t))′

1− ιc(t)

(
q>∇Ux(tq,tιc(t))t
q>∇U(tq,tιc(t)))

− Uxx(tq,tιc(t))t
Ux(tq,tιc(t))

) (37)

Proof. We will need

Lemma 8. Let f(x) be a strictly decreasing function with f ′(x) < 0 for all x and x∗ the unique

solution to x∗ = f(x∗). Then, there exists a constant K > 0 such that |x − f(x)|< ε implies
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|x− x∗|< Kε.

Proof. It suffices to consider the case when x < x∗. In this case, when ε is small enough, strict

positivity of f ′ we have f(x∗) + δ2(x∗ − x) > f(x) > f(x∗) + δ1(x∗ − x) for some δ1, δ2 > 0 and

x close to x∗, and the claim follows when we consider that x− f(x) = x− f(x)− (x∗ − f(x∗)).

First, define

φ(t;L) = (L− 1)(ι(t)− ιc(t)) . (38)

Let us show that φ stays bounded as L→∞. Indeed, the integral equation

ι(t) = (L− 1)

∫ ∞
1

g(tξ, ι(tξ))ξ−(L−1)dξ (39)

can be rewritten

ι(t) =

∫ 1

0

g(ty−1/(L−1), ι(ty−1/(L−1)))dy , (40)

where we have used the change of variables ξ−(L−1) = y. Differentiating, we get

0 ≥ ι′(t) =

∫ 1

0

y−1/(L−1)gt(ty
−1/(L−1), ι(ty−1/(L−1)))dy

+

∫ 1

0

ι′(ty−1/(L−1))y−1/(L−1)gx(ty
−1/(L−1)ι(ty−1/(L−1)))dy

≥
∫ 1

0

y−1/(L−1)gt(ty
−1/(L−1), ι(ty−1/(L−1)))dy ≥ K

∫ 1

0

y−1/(L−1)dy = K
1

1− 1/(L− 1)

(41)

and thus ι′(t) is bounded as L→∞. Thus, (8) and Lemma 8 imply that ι(t)− ιc(t) = O(1/(L−

1)) as L→∞. Passing to a subsequence, we may assume that a limit of φ(t) = φ(t;L), L→∞

exists.

Now, we can compute φ(t). Substituting ι(t) = ιc(t) + (L− 1)−1φ(t) +O((L− 1)−2) into
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the ODE (8), we get

ιc(t) + (L− 1)−1φ(t) +O((L− 1)−2) = ι(t)

= −q
>∇U (tq, t(ιc(t) + (L− 1)−1φ(t) +O((L− 1)−2)))

Ux (tq, t(ιc(t) + (L− 1)−1φ(t) +O((L− 1)−2)))
+
t(ιc(t) + (L− 1)−1φ(t) +O((L− 1)−2))′

L− 1

= −q
>∇U (tq, tιc(t))) + q>∇Ux(tq, tιc(t))tφ(t)(L− 1)−1

Ux (tq, t(ιc(t))) + Uxx(tq, tιc(t))tφ(t)(L− 1)−1
+
t(ιc(t))′

L− 1
+ O((L− 1)−2)

= ιc(t)

(
1 +

q>∇Ux(tq, tιc(t))t
q>∇U (tq, tιc(t)))

φ(t)(L− 1)−1 − Uxx(tq, tι
c(t))t

Ux(tq, tιc(t))
φ(t)(L− 1)−1

)

+
t(ιc(t))′

L− 1
+ O((L− 1)−2) .

(42)

Thus,

φ(t) =
t(ιc(t))′

1− ιc(t)

(
q>∇Ux(tq,tιc(t))t
q>∇U(tq,tιc(t)))

− Uxx(tq,tιc(t))t
Ux(tq,tιc(t))

) (43)

A.2 Proof of Proposition 4

Proof of Proposition 4. Let us rewrite the (5) as follows:

t
1

L− 1
ι′(t) = ι(t)− v(t, tι(t)),

where

v(t, tι(t)) = −q
>∇U(tq, tι(t))

Ux (tq, tι(t))
.

Let t̄ > 0 be such that − q>∇U(tq,x)
Ux(tq,x)

is decreasing in x for t > t̄.

In our proofs, we will be frequently using the following classic comparison theorem for

ODEs.

Lemma 9. Let f(t) be the unique solution to the ODE f ′(t) = F (t, f(t)), f(t0) = f0 with a

Lipshits-continuous F. Let also g(t) satisfy g(t0) ≤ f0 and g′(t) ≤ F (t, g(t)). Then, g(t) ≤ f(t)
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for all t > t0.

Lemma 10. Suppose that ι(t) > ιc(t) for some t > t̄. Then, ι′(t) > 0.

Proof. We have

t
1

L− 1
ι′(t) = ι(t)− v(t, tι(t)) >︸︷︷︸

t>t̄

ι(t)− v(t, tιc(t)) = ι(t)− ιc(t) > 0 .

Lemma 11. Let I = mint>0 ι
c(t). Then, any bounded solution ι(t) to (5) satisfies ι(t) ≥ I for

all t > t̄.

Proof. Suppose on the contrary that ι(t) < I for some t0 > t̄. Since ι(t) is decreasing, this

inequality also holds for all t > t0. Therefore, for all t > t0, we have

v(t, tι(t)) > v(t, tI) = I .

Therefore, for all t > t0, we have

t
1

L− 1
ι′(t) = ι(t)− v(t, tι(t)) < ι(t)− I.

Therefore, by Lemma 9, ι(t) ≤ ξ(t) where ξ(t) solves t 1
L−1

ξ′(t) = ξ(t) − I with ξ(t0) = ι(t0).

We have

ξ(t) = (ι(t0)− I)t1−L0 tL−1 + I

Since ι(t0) − I < 0, we get that ξ(t) converges to −∞ as t → ∞, and hence ι(t) cannot be

bounded.

Lemma 12. All decreasing and bounded solutions ι(t) to (8) satisfy I ≤ ι(t) < ιc(t) and,

hence, limt→+∞ ι(t) = I for all such solutions.
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Proof. The first claim follows from Lemmas 11 and 10. The second claim follows because

limt→+∞ ι
c(t) = I.

It remains to prove that a decreasing, bounded solution is unique. Suppose the contrary.

Let ι1(t) and ι2(t) be two such solutions. Pick a t0 > t̄ and assume without loss of generality

that ι1(t0) > ι2(t0). By the uniqueness theorem for ODEs, these two solutions cannot intersect

and, hence, ι1(t) > ι2(t) for all t. Therefore, using the assumption that v(t, x) is monotone

decreasing in x, we get

t
1

L− 1
(ι1(t)− ι2(t))′ = ι1(t)− ι2(t)︸ ︷︷ ︸

>0

− (v(t, tι1(t))− v(t, tι2(t)))︸ ︷︷ ︸
<0

> 0

That is, the difference between ι1(t) and ι2(t) is increasing as t grows. Thus, by Lemma 12,

0 < ι1(t)− ι2(t) ≤ lim
t→+∞

(ι1(t)− ι2(t)) = 0,

which is a contradiction. Thus, if a descreasing and bounded solution exists, it is unique.

Let us now prove existence. For each t0 > t̄, let ιt0(t) be the unique solution to (8)

satisfying ιt0(t) = ιc(t0). Then, the same comparison argument as in Lemma 10 implies that

ιt0(t) satisfies ιt0(t) < ιc(t) for all t < t0 and, hence, ιt0(t) is decreasing for t0 < t (same

argument implies that it is increasing for t > t0. Sending t0 to ∞, we get that we can select

a subsequence of ιt0(t) functions that converges on compact subsets of R+. Clearly, its limit is

globally decreasing and is bounded from below by I.

The proof of Proposition 4 is complete.

A.3 Proof of Proposition 5

We start with the following Lemma.

Lemma 13. Suppose Assumption 3 holds. Then, if ψk(·) < 0 (> 0) then ∂
∂k
IMq (t; k) > 0 (< 0)
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for every 0 < t < M , where IMq (t; k) is defined in the Proposition 4.

Proof of Lemma 13. We prove the Lemma for the case ψk(·) < 0. The second case is

symmetrical.

Differentiate the ODE (44) with respect to k. We get

t

L− 1

∂2IMq (t; k)

∂k∂t
= ψw(t, IMq (t; k); k) + ψI(t, I

M
q (t;w); k)

∂IMq (t; k)

∂k
. (44)

Denote
∂IMq (t;k)

∂k
= θ(t; k), then the above ODE can be rewritten as

t

L− 1

∂θ

∂t
= ψk(·) + ψI(·)θ. (45)

Since for each k we have that IMq (M ; k) = Icq(M,k) and Icq(M,k) shifts up when k increases

(indeed, by the Implicit Function Theorem, ∂
∂k
Icq(t; k) = −ψk(·)/ψI(·) > 0), we have that

θ(M ; k) > 0.

It suffices to prove that θ stays positive for all t < M . Suppose, on the contrary, that

θ becomes zero at some point N (for the first time as we move to the left of M). It must be

∂θ(N ;w)
∂t

> 0 (at that point θ(t) crosses zero from above) and θ(N ;w) = 0. At this point (45)

becomes

t

L− 1

∂θ

∂t︸︷︷︸
>0

= ψk(·)︸ ︷︷ ︸
<0

.

A contradiciton.

Since the equilibrium demand is a limit of Icq(M,w) we have the following proposition.

Proof of Proposition 5. First, compute

ψI = 1−
E
[(
q>δ
)
u′1(w1 + tq>δ)

]
u′0(w0 − tι(t))2

u′′0(w0 − tι(t))t > 0.
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The inequality is true because if Inada conditions hold for u1 (·), we must have q>δ > 0.

Otherwise, consumption can become negative, for which the utility function u1(·) is not defined.

Similarly,

ψt = −
E
[(
q>δ
)2
u′′1(w1 + tq>δ)

]
u′0(w0 − tι(t)) + ι(t)u′′0(w0 − tι(t))E

[(
q>δ
)
u′1(w1 + tq>δ)

]
u′0(w0 − tι(t))2

= −
E
[(
q>δ
)2
u′′1(c1)

]
− ι(t)ARA(c0)E

[(
q>δ
)
u′1(c1)

]
u′0(c0)

> 0

The inequality is true because if Inada conditions hold for u1 (·), we must have q>δ > 0.

But then the equilibrium demand ι(t) will be positive as well. Therefore, Assumption 1 holds.

Now compute ψw0 and ψw1

ψw0 =
E
[(
q>δ
)
u′1(w1 + tq>δ)

]
u′0(w0 − tι(t)))2

u′′0(w0 − tι(t)))

Note that if Inada conditions hold for u1 (·), we must have q>δ > 0 (otherwise, consump-

tion can become negative). Thus ψw0 < 0.

By a similar argument,

ψw1 = −
E
[(
q>δ
)
u′′1(w1 + tq>δ)

]
u′0(w0 − tι(t)))

> 0.

The rest follows from Lemma 13.

A.4 Proof of Proposition 6

The Poof relies on several Lemmas.

Lemma 14. sign
[
(tιc(t))′

]
= sign

[
1− E

[
RRA1(tq>δ)

]]
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Proof. Denote Y (t) = tιc(t). It solves

Y (t)u′0(w0 − Y (t)) = E
[
t
(
q>δ
)
u′1(tq>δ)

]

Differentiate wrt to t

Y (t)′ (u′0(c0)− Y (t)u′′0(c0)) = E
[(
q>δ
)
u′1(tq>δ)

]
+ E

[
t2
(
q>δ
)2
u′′1(tq>δ)

]
= E

[(
q>δ
)
u′1(tq>δ)

] (
1− E

[
RRA1(tq>δ)

])

Lemma 15. Suppose that RRA0(c0) = RRA1(c1) = γ ≥ 1 . Then ∂
∂w0

Icq(t;w0) is decreasing in

t.

Proof. By the Implicit Function Theorem,

∂

∂w0

Icq(t;w0) = −ψw0(t, ι
c(t);w0)

ψI(t, ιc(t);w0)
.

Compute

ψw0 =
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tιc(t))2

u′′0(w0 − tιc(t))

=
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tιc(t))

u′′0(w0 − tιc(t))
u′0(w0 − tιc(t))

= − γιc(t)

w0 − tιc(t)

Note that by Lemma 14 −ψw0 > 0 is decreasing in t.
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Similarly,

ψI = 1−
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tιc(t))

u′′0(w0 − tιc(t))
u′0(w0 − tιc(t))

= 1− ιc(t)u
′′
0(w0 − tιc(t))
u′0(w0 − tι(t))

t

= 1− ψw0t

Therefore,

− ψI
ψw0

= −1/ψw0 + t,

which is increasing in t. Thus, ∂
∂w0

Icq(t;w0) = −ψw0

ψI
is decreasing in t.

Lemma 16. Suppose that RRA0(c0) = γ > 1 . Then ∂
∂w0

Icq(t;w0) > −ψw0 (t,ι(t);w0)

ψI(t,ι(t);w0)
.

Proof. Compute

ψw0 =
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tι(t))2

u′′0(w0 − tι(t))

and

ψI = 1−
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tι(t))

u′′0(w0 − tι(t))
u′0(w0 − tι(t))

= 1− ψw0t.

We have that

−ψw0

ψI
= (−1/ψw0 + t)−1 .
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At the same time (Lemma 15)

∂

∂w0

Icq(t;w0) =
(
−1/ψcw0

+ t
)−1

,

where

ψcw0
=
E
[(
q>δ
)
u′1(tq>δ)

]
u′0(w0 − tιc(t))2

u′′0(w0 − tιc(t)).

Since for CRRA utility
u′′0 (x)

u′0(x)2
= −γxγ−1 is increasing in x and ι(t) < ιc(t) we get

−1/ψcw0
< −1/ψw0

Therefire

−ψw0

ψI
= (−1/ψw0 + t)−1 <

(
−1/ψcw0

+ t
)−1

=
∂

∂w0

Icq(t;w0)

Proof of Proposition 6. Denote

θc(t;w0) =
∂Icq(t;w0)

∂w0

and

θ0(t;w0) = −ψw0(t, ι(t);w0)

ψI(t, ι(t);w0)

which is a locus where ∂θ
∂t

= 0. From Lemma 16 we know that θ0(t) lies below θc(t). Moreover, at

point M Icq(t;w0) = Iq(t;w0) and we have that θ0(M) = θc(M) > 0. Suppose θM(t) crosses θc(t)

at some point N (for the first time as we move left of the point M). At this point θM(N)′ < 0

(the crossing has to be from below, since at point M θM(t) crosses θc(t) horiszontally). But his

means that θM(N) is below θ0(t) which contradicts the fact that θ0(t) lies below θc(t).
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A.5 Additional proofs

Proposition 18. Pick a pair of compact sets K, Y ⊂ RN such that Y contains an open

neighborhood of zero. Then, there exists a threshold L∗ = L∗(K,Y) such that, for all ε ∈ K

and L > L∗ the function Φ(q) = v(q) − q · ∇Z∗((q − ε)/(c(L − 1))) attains its maximum over

q ∈ Y at q = ε/L and hence (D(p),Y) with D(p) = −c−1∇Z(p) is the equilibrium. In this

equilibrium, the price impact matrix Λ satisfies the following properties:

• Λ is symmetric: Λi,j = Λj,i for all i, j.

• Λ is positive-definite. In particular, Λi,i > 0 for all i.

• if δi and δj are independent, then Λi,j = 0.

Proof of Proposition 18. The following lemma follows by standard arguments.

Assumption 7. The probability distribution of δ has a a compact support.

Lemma 17. Under the Assumption 7, there exist constants c1 > c2 > 0 such that the eigenval-

ues of −∇2v(q) and −∇2Z∗(q) belong to [c2, c1]. Furthermore, ∇3Z∗ is uniformly bounded on

RN .

Now, pick a compact set K. Our goal is to show that the function Φ(q) = v(q) − q ·

∇Z∗((q − ε)/(c(L − 1))) attains its global maximum at q = s/L over all q ∈ Y when L is

sufficiently large. Define Ψ(q, ε) ≡ −q · ∇Z∗((q − ε)/(c(L− 1))). Then,

∇qΨ = −∇Z∗((q − ε)/(c(L− 1)))− q 1

c(L− 1)
∇2Z∗((q − ε)/(c(L− 1)))

and

∇2
qΨ = − 1

c(L− 1)

(
2∇2Z∗((q − ε)/(c(L− 1))) + q

1

c(L− 1)
∇3Z∗((q − ε)/(c(L− 1)))

)
.
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Thus, Φ is concave for (ε, q) ∈ K × Y when L is sufficiently large, and the claim follows.

Everywhere in the sequel, we always make the following assumption.

Assumption 8. The function U(q, x) is strictly concave in x.

The following theorem shows that finding equilibria reduces to solving just one ODE.

Theorem 1. Let D(p) be an equilibrium. Then, the function F (q) ≡ q ·D−1(q) solves the PDE

(1− c)q · ∇F (q) − F (q) = c
q · ∇qU(q, F (q))

Ux(q, F (q))
, (46)

and the inverse of the map D is given by

D−1(q) = (1− c)∇F (q) − c
∇qU(q, F (q))

Ux(q, F (q))
. (47)

The general solution to (46) can be constructed as follows. Consider the ODE

(1− c)tf ′(t) − f(t) = c
tq · ∇qU(tq, f(t))

Ux(tq, f(t))
, (48)

and let f(t; q;α) be the solution to this ODE satisfying f(1; q, α) = α. Then, the general solution

to (46) is given by F (q; ρ) = f(|q|; q/|q|; ρ(q/|q|)) , where ρ(x) is an arbitrary smooth function

on the unit sphere {q ∈ RN : |q|= 1} with |q|≡ (q · q)1/2 .

Proposition 19. Equilibrium asset prices are given by

p =
∇qU(ε/L , p · ε/L)

Ux(ε/L , p · ε/L)
− Λ

(
L− 1

L
ε

)
ε

L
(49)

where the equilibrium price impact matrix Λ is given by

Λ(q) = −∂Π(q)T , (50)
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whereby the cost of acquiring an infinitesimally small portfolio x is given by x · Λ(q)x. In

particular, trading costs are always positive if and only if Λ(q) is positive semi-definite.

Proposition 19 shows that equilibrium prices are given by the standard Euler equation

plus a liquidity correction term accounting for price impact Λ . Thus, understanding the impact

of the agents’ strategic behavior on asset prices is equivalent to understanding the behavior of

the price impact matrix Λ. This is precisely the goal of this paper.

By definition, Π(q) is the inverse of the map (L − 1)D, so that Π((L − 1)D(p)) = p.

Differentiating, we get

∂Π|(L−1)D(p) = (L− 1)−1(∂D(p))−1 ,

and hence

∇qU(D(p), D(p) · p) + Ux(D(p), D(p) · p) (p− (L− 1)−1(∂D(p)T )−1D(p)) = 0 . (51)

As we can see, (51) is a highly non-linear system of partial differential equations for the N

components of the map D, that may be difficult to tackle analytically when the number N

of securities is large. However, as we show below, quite surprisingly, (51) can be reduced to

solving just one ordinary differential equation (ODE).

Multiplying (51) by the matrix ∂D(p)T , and adding UxD(p) to both sides of the equation,

we get

∂D(p)T∇qU + Ux∂D(p)Tp+ UxD(p) =
L

L− 1
UxD(p) . (52)

Let

Z(p) ≡ U(D(p), D(p) · p) (53)

be the agent’s equilibrium indirect utility for a given price vector p. Let also

Y (p) ≡ Ux(D(p), D(p) · p) , (54)
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and

c ≡ L− 1

L
. (55)

Then, we have

∇Z(p) = ∂D(p)T∇qU(D(p), D(p) · p) + Ux(D(p), D(p) · p)(∂D(p)Tp+D(p)) , (56)

and hence we can rewrite (52) as

∇Z(p) =
1

c
Y (p)D(p) . (57)

Substituting this identity into the definition of Z(p), we arrive at the following system of PDEs

for (Z(p), Y (p)) :

Y (p) = Ux(c∇Z(p)/Y (p), cp · ∇Z(p)/Y (p))

Z(p) ≡ U(c∇Z(p)/Y (p), cp · ∇Z(p)/Y (p)) .

(58)

Proof of Theorem 1.

Consider now an equilibrium demand schedule

D(p) = −c∇Z(p)/Y (p) ,

where Z(p) and Y (p) are the functions from Proposition 2. Let q = −c∇Z(p)/Y (p) and let

π(q) = D−1(q). Define Ỹ (q) = Y (π(q)). Then, we have ∇Z(p(q)) = −Ỹ (q)q/c, and the system

(58) takes the form

Ỹ (q) = −Ux(q, π(q) · q)

Z(π(q)) = U(q, π(q) · q) .
(59)

Define J(q, x) to be the unique solution to

x = −Ux(q, J) .
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Then, the first equation in (59) implies that

π(q) · q = J(q, Ỹ (q)) . (60)

Differentiating the second equation in (59) with respect to q, we get

− Ỹ (q)c−1(∂π(q))T q ≡ ∇qU(q, J(q, Ỹ (q))〉) +Ux(q, J(q, Ỹ (q)))[Jq(q, Ỹ (q)) +Jx∇Ỹ (q)] . (61)

Differentiating the identity (60) we get

(∂π(q))T q + π(q) = Jq(q, Ỹ (q)) + Jx∇Ỹ (q)

and hence we can rewrite equation (61) as

− Ỹ (q)c−1[Jq(q, Ỹ (q)) + Jx∇Ỹ (q)− π(q)]

= ∇qU(q, J(q, Ỹ (q))) + Ux(q, J(q, Ỹ (q)))[Jq(q, Ỹ (q)) + Jx∇Ỹ (q)] .

(62)

Using the fact that, by definition, Ux(q, J(q, Ỹ (q))) = −Ỹ (q), and multiplying equation (62) by

q, we get

Ỹ (q)c−1[q · Jq(q, Ỹ (q)) + Jxq · ∇Ỹ (q)− J(q, Ỹ (q))]

= −q · ∇qU(q, J(q, Ỹ (q))〉) + Ỹ (q)[q · Jq(q, Ỹ (q)) + Jxq · ∇Ỹ (q)] .

(63)

Now, define

F (q) ≡ J(q, Ỹ (q)) .

Then, a direct calculation implies that we can rewrite the PDE as

((c−1 − 1)q · ∇F (q) − c−1F (q)) =
q · ∇qU(q, F (q))

Ux(q, F (q))
, (64)
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which yields both Equations (46) and (47). Furthermore, equation (62) implies that

π(q) = (1− c)∇F (q) − c
∇qU(q, F (q))

Ux(q, F (q))
= ∇F (q) − c

Ux(q, F (q))
∇Û(q)

= −∇qU(q, F (q))

Ux(q, F (q))
+

1− c
Ux(q, F (q))

∇Û(q)

(65)

with Û(q) = U(q, F (q)).

Let us now make a change of variables to spherical coordinates

q1 = t cosφ1, q2 = t sinφ1 cosφ2, · · · , qN = t sinφ1 sinφ2 · · · sinφN−1 .

Then, let Ψ(t, φ) = F (q(t, φ)). Then, we have

∂Ψ

∂t
=

∂q

∂t
· ∇F =

1

t
q · ∇F (q) ,

and thus (64) takes the form

(1− c)t∂Ψ

∂t
− Ψ(t, φ) = c

tφ · ∇qU(tφ,Ψ(t, φ))

Ux(tφ,Ψ(t, φ))

and we arrive at (48).

Let G(q) = w0−F (q) be the agent’s equilibrium time-zero consumption when he acquires

portfolio q, and let V̂ (q) = q · ∇V (q). Then, a direct calculation yields the following result.

Corollary 1. The function G(q) satisfies the PDE

u′(G) [(1− c)q · ∇G(q) − G(q) + w0] = cV̂ (q) , (66)
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and the inverse D−1(q) = π(q) of equilibrium demand is given by

π(q) =
∇S(q)

−u′(G(q))
(67)

with

S(q) ≡ (1− c)u(G(q))− cV (q) .

Moreover,

q · π(q) = w0 − G(q) and qT (∇π(q))T q = (L− 1)

[
w0 − G(q) − V̂ (q)

u′(G(q))

]
.

Proof of Corollary 1. The assumption

U(q, x) = u(w0 − x) + V (q)

implies that

∇qU(q, x) = ∇V (q) and Ux(q, x) = −u′(w0 − x) .

The result then follows directly from the PDE (46) and the definitions of G and û1.

We know that G satisfies the following differential equation:

u′(G(q)) [(1− c)q · ∇G(q) − G(q) + w0] = cû1(q)

=⇒ (1− c)q · ∇G(q) =
c

u′(G(q))
û1(q) + G(q) − w0 .

Furthermore, by (47), since G(q) = w0 − F (q), we have

π(q) = (1− c)∇F (q) − c
∇qU(q, F (q))

Ux(q, F (q))
= −(1− c)∇G(q) + c

∇qV (q)

u′(G(q))
= − ∇S(q)

u′(G(q))

(68)
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because

∇S(q) = (1− c)u′(G(q))∇G(q) − c∇V (q) .

Thus,

q · π(q) = −q · ∇S(q)

u′(G(q))
= −(1− c)q · ∇G(q) +

c

u′(G(q))
q · ∇V (q)

= w0 − G(q) .

This equality implies that

−∇G(q) = ∇(q · π(q)) = π(q) + (∇π(q))T q =⇒ (∇π(q))T q = −π(q) − ∇G(q) .

Multiplying both sides of the last equality by q, we obtain

qT (∇π(q))T q = −q · π(q) − q · ∇G(q)

= −q · π(q) − 1

1− c

[
c

u′(G(q))
q · ∇V (q) − q · π(q)

]
= (L− 1)

[
q · π(q) − 1

u′(G(q))
û1(q)

]
.

Lemma 18. Suppose that S is convex with a strictly positive definite Hessian. Then, D(p) is

bijective and ∂D is always invertible.

Proof of Lemma 18. Our goal is to show that π(q) = ∇S(q)
−u′(G(q))

is bijective. That is, equation

p =
∇S(q)

−u′(G(q))

has unique solution q = π−1(p). Let q ∈ π−1(p) and let a(q) = −u′(G(q)). Let also Θ(x) =

∇S−1(x). By assumption, S is strictly convex, and hence Θ is well-defined, and ∂Θ = (∇2S)−1
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is positive definite. We have

q = Θ(a(q)p).

Furthermore, by Corollary 1, we have G(q) = w0 − q · π(q) = w0 − q · p = w0 − p ·Θ(a(q)p).

Thus, a(q) satisfies

a(q) = −u′(G(q)) = −u′(w0 − p ·Θ(a(q)p)).

We have ∂
∂a

(p · Θ(ap)) = pT∂Θ(ap)p ≥ 0 because ∂Θ is positive definite. Thus, −u′(w0 − p ·

Θ(a(q)p)) is monotone decreasing in a and hence a = −u′(w0− p ·Θ(p)) has a unique solution

a = a(p), and then q = Θ(a(p)p) is also uniquely defined.

Proposition 20. We have Λ(q) = 1
L−1

Λ∗(q/(L− 1)) with

Λ∗(q) =
1

u′(G(q))

(
∇2S(q)− u′′(G(q))

u′(G(q))
∇G(q)((1− c)u′(G(q))∇G(q)− c∇V (q))T

)

Thus, Λ is symmetric if and only if ∇G(q) is proportional to ∇V (q). Furthermore,

u′(G)q · Λ(q)q = (L− 1)
(
V̂ (q) + (G(q)− w0)u′(G)

)
(69)

Proof of Proposition 20. We have

S(q) = (1− c)u(G(q))− cV (q) ,

and hence

∇S(q) = (1− c)u′(G(q))∇G(q)− c∇V (q)

∇2S(q) = (1− c)u′(G(q))∇2G(q) + (1− c)u′′(G(q))∇G(q)(∇G(q))T − c∇2V (q) .

(70)

52



Differentiating (66), we get

u′′(G) [(1− c)q · ∇G(q) − G(q) + w0]∇G(q) + u′(G)[−c∇G(q) + (1− c)∇2G(q)q] = c∇û1(q)

(71)

and hence, defining χ ≡ q · ∇G(q), we get

u′(G)(1− c)q · ∇2G(q)q = cq · ∇û1(q)− u′′(G) [(1− c)χ − G(q) + w0]χ+ u′(G)cχ

and

q · ∇S(q) = (1− c)u′(G(q))χ− cû1(q)

q · ∇2S(q)q = [cq · ∇û1(q)− u′′(G) [(1− c)χ − G(q) + w0]χ+ u′(G)cχ]

+ (1− c)u′′(G(q))χ2 − cq · ∇2V (q)q

= q · ∇û1(q)− u′′(G) [−G(q) + w0]χ+ u′(G)cχ− cq · ∇2V (q)q .

(72)

Hence, we have

u′(G)q · Λ(q)q = −u′(G)q · ∂π(q)q = q · ∇2S(q)q − u′′(G)

(u′(G))
(q · ∇S(q))χ

= q · ∇û1(q)− u′′(G) [−G(q) + w0]χ+ u′(G)cχ− cq · ∇2V (q)q

− u′′(G)

(u′(G))
χ[(1− c)u′(G(q))χ− cû1(q)]

= cq · ∇û1(q)− u′′(G) [−G(q) + w0]χ+ u′(G)cχ− (1− c)u′′(G(q))χ2

− cq · ∇2V (q)q +
u′′(G)

(u′(G))
χ[cû1(q)]

= c(q · ∇û1(q)− q · ∇2V (q)q + u′(G)χ)

= c
(
q · ∇û1(q)− q · ∇2V (q)q + (1− c)−1(cû1(q) + (G(q)− w0)u′(G))

)
= c(1− c)−1 (û1(q) + (G(q)− w0)u′(G)) ,

(73)

where we have used that

(1− c)χ = (cû1/u
′(G) +G− w0)
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and

q · ∇û1 = û1 + q · ∇2V q .

In the competitive limit, as c→ 1, G satisfies

w0 −G(q) =
û1(q)

u′(G(q))

which implies

−u′(G)χ = q · ∇û1(q)− u′′(G)

u′(G)
û1(q)χ

so that

χ =
−q · ∇û1(q)

u′(G)− u′′(G)
u′(G)

û1(q)

The claim of Proposition ?? follows from the following lemma.

Lemma 19. For any compact subset V̂ ⊂ V and any compact subset X̂ ⊂ X there exists an

L∗ > 1 such that

arg max
q∈V̂
{u(w0 − q · π((ε− q)/(L− 1))) + V (q)} = ε/L

for any ε ∈ X̂ ∩ (LV̂) for any L > L∗.

Proof of Lemma 19. Recall that

Π(q) = π(q/(L− 1)) ,

and hence we need to verify that

B(q) = u(w0 − q · π((ε− q)/(L− 1))) + V (q)
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attains its maximum at q = ε/L for any ε. Differentiating, we get

∇B(q) = ∇V (q)

+ u′(w0 − q · π((ε− q)/(L− 1)))

× [−π((ε− q)/(L− 1)) + (L− 1)−1∂πT ((ε− q)/(L− 1))q]

(74)

and

∇2B(q) = u′′(w0 − q · π((ε− q)/(L− 1)))K(q)K(q)T + ∇2V (q)

+ u′(w0 − q · π((ε− q)/(L− 1)))

× [2
1

L− 1
∂π((ε− q)/(L− 1))− (L− 1)−2∂2πT ((ε− q)/(L− 1))q] .

(75)

where we have defined

K(q) ≡ −π((ε− q)/(L− 1)) + (L− 1)−1∂πT ((ε− q)/(L− 1))q .

The admissible set is such that q · π((ε− q)/(L− 1)) is uniformly bounded away from w0 from

above.

Proof of Lemma 2.

When the elasticity of inter-temporal substitution (EIS) equals one, that is u(x) =

log(x), the PDE (66) characterizing G becomes

(1− c)q · ∇G(q) − (1 + cû1(q))G(q) = −w0 , (76)

and the claim follows by direct calculation from Theorem 1 because the corresponding ODE is

linear and hence can be solved explicitly. The result about the growth rate of φ follows from

the lower bound on û1.
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Proof of Lemma 3. We will need the following lemma.

Lemma 20. Suppose that the function A(q, t) is convex in q for any t. Then, for any random

variable T taking values in the domain of definition of A, the function

F (q) = logE[eA(q,T )]

is convex in q.

Proof. We have

∇F (q) =
E[∇qA(q, T )eA(q,T )]

E[eA(q,T )]

and

E[eA(q,T )]2∇2F (q)

= E[eA(q,T )]E[(∇2
qA(q, T ) + (∇qA)(∇qA)T )eA(q,T )]

− E[∇qA(q, T )eA(q,T )]E[(∇qA(q, T ))T eA(q,T )]

(77)

Pick a vector x. Then, the sign of the quadratic form xT∇2F (q)x coincides with that of

E[eA(q,T )]E[xT (∇2
qA(q, T ) + (∇qA)(∇qA)T )xeA(q,T )]

− E[xT∇qA(q, T )eA(q,T )]E[(∇qA(q, T ))TxeA(q,T )]

(78)

Since, by assumption, A is convex, we have E[xT∇2
qA(q, T )x ≥ 0, and hence it suffices to show

that

E[eA(q,T )]E[xT ((∇qA)(∇qA)T )xeA(q,T )] ≥ E[xT∇qA(q, T )eA(q,T )]E[(∇qA(q, T ))TxeA(q,T )] .

(79)

Define a random variable Y = xT∇qA(q, T ), and a new measure with the density dP̃ /dP =

eA(q,T )(E[eA(q,T )])−1 with respect to the original measure dP. Let also Ẽ denote the expectation
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under this measure change. Then, the desired inequality (79) is equivalent to

Ẽ[Y 2] ≥ Ẽ[Y ]2 ,

and the claim follows. Suppose now that û1 is concave. Define A(q, t) ≡ −
∫ t

1

cû1(ρ1/Lq)
ρ

dρ.

Then, A is convex q and hence, by Lemma 20, so is

logG(q) = log

∫ ∞
1

eA(s)ds

s2
.

Thus, S = (1− c) logG(q)− V (q) is also convex if V is concave.

By direct calculation,

∇2S(q) =
(1− c)
G2(q)

[
G(q)∇2G(q) − ∇G(q)(∇G(q))T

]
− c∇2V .

Passing to the limit as L → ∞ in G(q) =
∫∞

1
e−

∫ s
1
cû1(ρ

1/Lq)+1
ρ

dρ ds
s

and using the Lebesgue

dominated convergence theorem, we get

G(q;∞) ≡ lim
L→∞

G(q) =
w0

1 + û1(q)

and, similarly,

∇G(q;∞) = − G(q;∞)

1 + û1(q)
[∇V + (∇2V )T q] .

Substituting these expressions into the formula for price impact (Proposition 20)

Λ∗(q) =
1

u′(G(q))

(
∇2S(q)− u′′(G(q))

u′(G(q))
∇G(q)((1− c)u′(G(q))∇G(q)− c∇V (q))T

)
,

we get the required result.
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Proof of Proposition 10. By (69), we need to show that

û1(q) + (G(q)− w0)u′(G) < 0,

that is

G(q)/w0 <
1

1 + û1(q)
.

Let ` ≡ 1/L and denote G(q, `) = G(q). By (21),

G(q, `) = w0

∫ ∞
1

e−
∫ s
1

(1−`)û1(ρ
`q)+1

ρ
dρ ds

s

and the competitive limit corresponds to G(q, 0) = 1
1+û1(q)

. Thus, to prove the claim, it suffices

to show that ∂G/∂` ≤ 0.

Then, we have

û1(q) =
E[δ · q(w + δ · q)−γ]
E[(w + δ · q)1−γ]

,

∇2V (q) = −γE[δδT (w + δ · q)−γ−1]

E[(w + δ · q)1−γ]

− (1− γ)
1

(E[(w + δ · q)1−γ])2
E[δ(w + δ · q)−γ]E[δT (w + δ · q)−γ]

(80)

and hence

∇û1(q) = ∇V (q) + ∇2V (q)q =
E[δ(w + δ · q)−γ]
E[(w + δ · q)1−γ]

− γE[δ(δ · q)(w + δ · q)−γ−1]

E[(w + δ · q)1−γ]

− (1− γ)
û1(q)

E[(w + δ · q)1−γ]
E[δ(w + δ · q)−γ]

= ((γ − 1)û1(q) + 1)∇V (q) − γ
E[δ(δ · q)(w + δ · q)−γ−1]

E[(w + δ · q)1−γ]
.

(81)
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Thus,

∇2û1(q) = (γ − 1)∇V (q)∇û1(q)T + ((γ − 1)û1(q) + 1)∇2V (q)

− γ
E[δδT (w + δ · q)−γ−1]− (γ + 1)E[δδT (δ · q)(w + δ · q)−γ−2]

E[(w + δ · q)1−γ]

+ γ(1− γ)
E[δ(δ · q)(w + δ · q)−γ−1]E[δT (w + δ · q)−γ]

(E[(w + δ · q)1−γ])2

= (γ − 1)∇V (q)

(
((γ − 1)û1(q) + 1)∇V (q) − γ

E[δ(δ · q)(w + δ · q)−γ−1]

E[(w + δ · q)1−γ]

)T

+ ((γ − 1)û1(q) + 1)∇2V (q)

− γ
E[δδT (w + δ · q)−γ−1]− (γ + 1)E[δδT (δ · q)(w + δ · q)−γ−2]

E[(w + δ · q)1−γ]

+ γ(1− γ)
E[δ(δ · q)(w + δ · q)−γ−1]E[δT (w + δ · q)−γ]

(E[(w + δ · q)1−γ])2

(82)

Pick a vector x ∈ RN and denote X = (x · δ)/(w+ q · δ) and Y = (δ · q)/(w+ δ · q). Then, under

the measure (w + q · δ)1−γ/E[(w + q · δ)1−γ], we have

x · ∇2V (q)x = −γE[X2]− (1− γ)E[X]2 = −γVar[X]− E[X]2 (83)

and therefore

x · ∇2û1(q)x = (γ − 1)E[X]

(
((γ − 1)E[Y ] + 1)E[X] − γE[XY ]

)

+ ((γ − 1)E[Y ] + 1) (−γE[X2] + (γ − 1)E[X]2)

− γ(E[X2]− (γ + 1)E[X2Y ]) + γ(1− γ)E[XY ]E[X]

= 2(γ − 1)E[X]2((γ − 1)E[Y ] + 1) + 2γ(1− γ)E[XY ]E[X]

− γ(1 + (γ − 1)E[Y ] + 1)E[X2] + γ(γ + 1)E[X2Y ]

(84)
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Thus,

(1 + û1(q))Λ∗(q;∞) =

(
−∇2V (q) +

1

1 + û1(q)
(∇V (q) +∇2V (q) q)∇V (q)T

)
= γ

E[δδT (w + δ · q)−γ−1]

E[(w + δ · q)1−γ]

+ (1− γ)
1

(E[(w + δ · q)1−γ])2
E[δ(w + δ · q)−γ]E[δT (w + δ · q)−γ]

+
1

1 + û1(q)

(
E[δ(w + q · δ)−γ]
E[(w + q · δ)1−γ]

− γE[(δ · q)δ(w + δ · q)−γ−1]

E[(w + δ · q)1−γ]

− (1− γ)
1

(E[(w + δ · q)1−γ])2
E[δ(w + δ · q)−γ]E[(δ · q)(w + δ · q)−γ]

)
E[δT (w + q · δ)−γ]
E[(w + q · δ)1−γ]

(85)

Denoting Y = δ · q/(w + δ · q), we get that, under the measure (w + q · δ)1−γ/E[(w + q · δ)1−γ],

(1 + û1(q))qTΛ∗(q;∞)q =
γ(E[Y 2]− E[Y ]2) + 2E[Y ]2

1 + E[Y ]
> 0

However,

(1 + û1(q))xTΛ∗(q;∞)x = γ
E[X2]− E[X]2

1 + E[Y ]
+ γ

E[X2]E[Y ]− E[X]E[XY ]

1 + E[Y ]
+

2E[X]2

1 + E[Y ]
.

Proposition 21. Suppose that

u(x) = log(x) and V (q) = E[log(δ · q)] .

Then, the function S is convex and the function

U(q, q · Π(ε− q)) = log (w0 − q · Π(ε− q)) + E[log(δ · q)]
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is concave over the set of feasible q. Therefore, the conjectured equilibrium is a true equilibrium.

Proof of Proposition 21.

Feasible portfolios q ∈ A satisfy

δ · q < |δ · ε|

almost surely. This inequality implies that19

δε

δ · (ε− q)
> 0 a.s. .

It follows from the functional form of V that

û1(q) = 1 .

Thus,

G(q) = w0

∫ ∞
1

e−
∫ s
1
cû1(ρ

1/Lq)+1
ρ

dρ ds

s

= w0

∫ ∞
1

e−
∫ s
1
c+1
ρ
dρ ds

s

= w0

∫ ∞
1

1

s2+c
ds

=
w0

1 + c
.

We know that

F (q) = qD−1(q); G(q) = w0 − F (q); û1(q) = q∇V (q)

S(q) = (1− c)u(G(q)) − cV (q); and π(q) = − ∇S(q)

u′(G(q))
.

19The denominator and the numerator have the same sign.
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It follows that

qD−1(q) =
c

1 + c
w0; F (q) =

c

1 + c
w0;

S(q) = (1− c) log

(
c

1 + c
w0

)
− cE[log(δ · q)] π(q) =

c

1 + c
w0E

[
δ

1

δ · q

]
.

The convexity of S is the a direct consequence of the concavity of the logarithm function.

By definition,

Π(q) = π

(
q

L− 1

)
= (L− 1)

c

1 + c
w0E

[
δ

1

δ · q

]
.

Therefore,

U(q, q · Π(ε− q)) = log (w0 − q · Π(ε− q)) + E[log(δ · q)]

= log

(
w0 −

c(L− 1)

1 + c
w0E

[
δ · q

δ · (ε− q)

])
+ E[log(δ · q)] .

WLOG, we set

w0 = 1 .

To show that U is concave, it is enough to show that

E

[
δ · q

δ · ε− δ · q

]
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is convex since log is an increasing function. We have20

∇E
[

δ · q
δ · ε− δ · q

]
= E

[
(δ · ε)δ

(δ · ε− δ · q)2

]
∇2E

[
δ · q

δ · ε− δ · q

]
= E

[
∇ (δ · ε)δ

(δ · ε− δ · q)2

]
= E

[
(δ · ε)δ

(
∇
(

1

(δ · ε− δ · q)2

))T]

= E

[
2δ · ε

(δ · ε− δ · q)3
δ (δ)T

]
.

Therefore,

xT
(
∇2E

[
δ · q

δ · ε− δ · q

])
x = 2E

[
δ · ε

(δ · (ε− q))3
(δ · x)2

]
.

The expression inside the expectation is almost surely positive. Hence, the expectation is

strictly positive (assuming weak regularity of the random variables’ distributions)

Proof of Proposition 11.

Under the assumptions of proposition, the PDE (66) characterizing G becomes

(1− c)G−γ(q) q · ∇G(q) − G1−γ(q) = cû1(q) . (86)

Thus,21

H(q) = G1−γ(q)

20We assume that the density functions are such that we can interchange differentiation and integration.
21G(q) is positive under the assumption of positive consumption, which holds in equilibrium for γ > 1. Thus,

we need not worry about branches of complex number when taking powers.
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satisfies the following PDE:

βG−γ(q) q · ∇G(q) − H(q) = cû1(q) .

It is direct to verify that the proposed solution satisfies this PDE.

Proof of Lemma 4.

Equation (86) implies that

G1−γ(q;∞) ≡ lim
L→∞

G1−γ(q) = −û1(q) =⇒ ∇G(q;∞)

G(q;∞)
=

[∇V (q) + (∇2V (q))T q]

(1− γ)û1(q)
.

We know from Proposition 20 that

Λ∗(q) =
1

u′(G(q))

(
∇2S(q)− u′′(G(q))

u′(G(q))
∇G(q)((1− c)u′(G(q))∇G(q)− c∇V (q))T

)
= Gγ(q)

(
∇2S(q) +

γ

G(q)
∇G(q)

[
(1− c)G−γ(q)∇G(q)− c∇V (q)

]T)
.

Putting these equalities together yields the desired result.

Proposition 22. Suppose that N = 1, that V is concave, increasing, and that ∇V is convex.

Moreover, suppose that

γ > 1 and ε < 0 .

Then, the function

U(q, q · Π(ε− q)) =
1

(1− γ)
(−q · Π(ε− q))1−γ + V (q)
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is concave on the interval (
min

{
1,
γ

2

}
ε, 0
)
.

In particular, if

γ ≥ 2 ,

the function U(q, q · Π(ε − q)) is concave over the set of feasible q, and thus, the proposed

equilibrium is the true equilibrium.

Proof of Proposition 22. The function U is

U(q, q · Π(ε− q)) =
1

1− γ
(−q · Π(ε− q))1−γ + V (q)

=
1

(1− γ)(L− 1)γ−1

(
− q

ε− q
ε− q
L− 1

· π
(
ε− q
L− 1

))1−γ

+ V (q)

=
1

(1− γ)(L− 1)γ−1

(
q

ε− q
G

(
ε− q
L− 1

))1−γ

+ V (q)

=
1

(1− γ)(L− 1)γ−1
H

(
ε− q
L− 1

)(
q

ε− q

)1−γ

+ V (q) ,

where the third equality follows from Corollary 1.

To prove that U is concave, it is sufficient to show that

H

(
ε− q
L− 1

)(
q

ε− q

)1−γ

is convex. As we show below, this convexity result holds for q < 0 if H is decreasing and convex

for q < 0. We start by showing that H satisfies these properties.

We know that

∇û1(q) = ∇V (q) + q · ∇2V (q) and ∇2û1(q) = 2∇2V (q) + q · ∇3V (q) .

Thus, û1 is increasing for q ≤ 0 since V is increasing and concave. Moreover, û1 is concave for
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q ≤ 0 since V is concave and ∇V is convex. It follows from the definition

H(q) =
c

β

∫ 1

0

t−1−1/βû1(qt)dt

that H is decreasing and convex for q ≤ 0.

The result then follows from the lemma below

Lemma 21. Suppose that

min
{

1,
γ

2

}
ε < q < 0 and γ > 1 .

Then, for an arbitrary function f(q) that is a convex and decreasing over the assumed interval

for q, the function

h(q) ≡ f(α (ε− q))
(

q

ε− q

)1−γ

is convex for any positive constant α over the assumed interval for q.

Proof. WLOG, we assume that

α = 1 .

Let

h(q) = f(ε− q)
(

q

ε− q

)1−γ

.

Then,

h′′(q) =

(
q
ε−q

)−γ (
(γ − 1)ε(2q − γε)f(ε− q) − q(q − ε)

[
q(q − ε)f ′′(ε− q) − 2(γ − 1)εf ′(ε− q)

])
q(q − ε)3

.
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We know that

q

ε− q
> 0

(γ − 1)ε(2q − γε)f(ε− q) < 0

− q(q − ε) > 0

q(q − ε)f ′′(ε− q) < 0

− 2(γ − 1)εf ′(ε− q) < 0 .

The result then follows from the assumptions.

Proof of Proposition 13.

The function û1 simplifies to

û1(q) = e−τ .

Thus,

Gi(q) = αiw0

∫ ∞
1

e−
∫ s
1
e−τ ci+1

ρ
dρ ds

s

= αiw0

∫ ∞
1

elog s
−(1+e−τ ci) ds

s

= αiw0

∫ ∞
1

s−(2+e−τ ci) ds

= αiw0
1

1 + e−τci
.

Thus,

D−1

(
1

βi
q

)
= D−1

i (q) = −(1− ci)∇Gi(q) + ciGi(q)∇V (q) .
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It follows that

D−1

(
1

βi
q

)
= D−1

i (q) = ciGi(q)∇V (q)

= αiw0
e−τci

1 + e−τci
E[(δ · q)−1δ]

= αiw0
1

βi

e−τci
1 + e−τci

E[(δ · 1

βi
q)−1δ]

= αi
1

βi

β − βi
β + e−τ (β − βi)

E[(δ · 1

βi
q)−1δ]e−τw0

=⇒ D−1(x) = αi
1

βi

(β − βi)e−τ

β + e−τ (β − βi)
w0E[(δ · x)−1δ] .

We now compute the equilibrium price directly. Recall that

Πi(q) = D−1
(
(β − βi)−1q

)
and Πi(ε− q) = p .

In equilibrium, qi = ηiε and

p = Πi((1− ηi)ε)

= D−1

(
1

β − βi
(1− ηi)ε

)
= D−1

(
1

β − βi
β − βi
β

ε

)
= D−1

(
1

β
ε

)
= κw0E

[(
1

β
ε · δ

)−1

δ

]

= w0E

[(
1

κβ
ε · δ

)−1

δ

]
.

For a scale-invariant equilibrium, it is necessary that the coefficient βi satisfies

∃ κ such that κ = αi
1

βi

(β − βi)e−τ

β + e−τ (β − βi)
∀ i . (87)
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We normalize κ = 1. Then,

βi[β + e−τ (β − βi)] = αi(β − βi)e−τ .

(1 + e−τ )ββi − β2
i = αi(β − βi)e−τ .

0 = β2
i −

[
αie
−τ + β

(
1 + e−τ

)]
βi + αiβe

−τ .

It follows that

βi =
[αie

−τ + β (1 + e−τ )] ±
√

[αie−τ + β (1 + e−τ )]2 − 4αie−τβ

2
(88)

=⇒ βi =
2αie

−τβ

αie−τ + (1 + e−τ ) β ±
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
. (89)

We can thus solve for β as the solution of the equation

L∑
j=1

2αje
−τ

αje−τ + (1 + e−τ )X ±
√

[αje−τ − (1− e−τ )X]2 + 4X2e−τ
= 1 . (90)

We will show that this equation has a no solution when the ± sign in the denominator is

negative and a unique solution when this sign is positive. Moreover, the unique solution is

positive.

First, we show that there is no equilibrium with β < 0. Suppose that β < 0. If

βi =
2αie

−τβ

αie−τ + (1 + e−τ ) β −
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
,
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then,

0 >
[
αie
−τ +

(
1 + e−τ

)
β
]2 − [(

αie
−τ −

(
1− e−τ

)
β
)2

+ 4e−τβ2
]

=⇒ αie
−τ +

(
1 + e−τ

)
β <

√
(αie−τ − (1− e−τ ) β)2 + 4e−τβ2

=⇒ 0 > αie
−τ +

(
1 + e−τ

)
β −

√
(αie−τ − (1− e−τ ) β)2 + 4e−τβ2

=⇒ 0 >
2αie

−τ

αie−τ + (1 + e−τ ) β −
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ

=⇒ βi > 0 .

If

βi =
2αie

−τβ

αie−τ + (1 + e−τ ) β +
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
,

we have

0 <
[
αie
−τ −

(
1 + e−τ

)
β
]2 − [(

αie
−τ −

(
1− e−τ

)
β
)2

+ 4e−τβ2
]

=⇒ αie
−τ −

(
1 + e−τ

)
β >

√
(αie−τ − (1− e−τ ) β)2 + 4e−τβ2

=⇒ 2αie
−τ > αie

−τ +
(
1 + e−τ

)
β +

√
[αie−τ − β (1− e−τ )]2 + 4β2e−τ > 0

=⇒ 1 <
2αie

−τ

αie−τ + (1 + e−τ ) β +
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ

=⇒ βi > 1 .

Thus, under the assumption that β < 0, we have

0 > β =
∑
i

βi > 1 ,

a contradiction. Thus, Equation (90) has no solution β < 0.
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Next, we consider the case of positive β. Suppose that β > 0. It follows that

βi > 0 ∀i; and β > βi ∀i .

Moreover,

0 >
[
αie
−τ −

(
1 + e−τ

)
β
]2 − [(

αie
−τ −

(
1− e−τ

)
β
)2

+ 4e−τβ2
]

=⇒ αie
−τ −

(
1 + e−τ

)
β > −

√
(αie−τ − (1− e−τ ) β)2 + 4e−τβ2

=⇒ 2αie
−τ > αie

−τ +
(
1 + e−τ

)
β −

√
[αie−τ − β (1− e−τ )]2 + 4β2e−τ > 0

=⇒ 1 <
2αie

−τ

αie−τ + (1 + e−τ ) β −
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
,

from which is follows that22

βi 6=
2αie

−τβ

αie−τ + (1 + e−τ ) β +
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
.

Thus, we are left with

βi =
2αie

−τβ

αie−τ + (1 + e−τ ) β +
√

[αie−τ − β (1− e−τ )]2 + 4β2e−τ
,

which satisfies the condition β > βi. It remains to show that there exists a unique β in this

case, which is equivalent to showing that the equation

∑
j

f(X,αj) = 1

22Otherwise we would have βi > β, a contradiction.
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has a unique solution X, where

f(X,α) =
2αe−τ

αe−τ + (1 + e−τ )X +
√

[αe−τ − (1− e−τ )X]2 + 4X2e−τ
.

We shall use the following lemma, whose proof we omit:

Lemma 22. 1. The function f is decreasing in X, increasing and concave in α.

2. Let

g(X,α) ≡ Xf(X,α) .

The function g is increasing in X, in α, and concave in α.

The monotonicity of f , combined with the facts that

∑
j

f(0, αj) = L > 1 and lim
X→∞

∑
j

f(X,αj) = 0 ,

imply that the equation ∑
j

f(X,αj) = 1

has a unique positive solution.

We have thus for any distribution {αi}Li=1 of initial wealth, there exists a unique equi-

librium. In equilibrium,

β > βi > 0 ∀ i and αi < αj ⇐⇒ βi < βj .
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Proof of Proposition 14. We shall use the following lemma:

Lemma 23. Let α be an initial distribution of wealth with L ≥ 2 and consider an arbitrary

break-up ᾱ of α with23

L̄ = L+ 1 and ᾱL,1 = y; ᾱL,2 = αL − y; y ∈ (0, αL) .

Moreover, let X∗ and X̄∗ be the respective solutions of the equations

f(X,α) = 1 and f(X, ᾱ) = 1 .

Then,

X∗ < X̄∗.

Recall that the equilibrium price is

p = β w0E
[
(ε · δ)−1 δ

]
;

the price impact matrix of trader i is

Λ∗i (q) = βiw0E
[
(q · δ)−2 δδT

]
;

β is the solution to the equation

f(X,α) = 1 while βi = g(β, αi) .

It thus follows directly from Lemma 23 that

p < p̄

23Thus, we are breaking the Lth trader into two, with respective sizes ᾱL,1 and ᾱL,2.
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where p and p̄ are the equilibrium prices under wealth distributions α and ᾱ respectively. In

addition, the highest p̄ is achieved when the trader been broken up is split into two equal

traders, that is when

y =
1

2
αL .

Moreover, suppose that i < L (that is, trader i was left unchanged). Then,

Λ∗i (q) < Λ̄∗i (q) ,

where the inequality is component-wise.

Next, we consider the utility function. The utility function is

Ui(q, q · p) = log(αiw0 − q · p) + e−τE[log(δ · q)] .

In equilibrium,

q∗i = ηi ε where ηi =
βi
β
.

Thus, the equilibrium utility is

U∗i = log

(
αiw0 −

βi
β
w0E

[(
1

β
ε · δ

)−1

ε · δ

])
+ e−τ E

[
log

(
βi
β
ε · δ

)]
= logw0 + e−τE [log(ε · δ)] + log(αi − βi) + e−τ log

(
βi
β

)
= logw0 + e−τE [log(ε · δ)] + log(αi − βi) + e−τ log f(καβα, αi) .

Let α and ᾱ be as in Proposition 14. Suppose that trader i is not the one been broken
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up (that is, i < L). Then,

U∗i,α = logw0 + e−τE [log(ε · δ)] + log(αi,α − βi,α) + e−τ log f(βα, αi,α)

U∗i,ᾱ = logw0 + e−τE [log(ε · δ)] + log(αi,ᾱ − βi,ᾱ) + e−τ log f(βᾱ, αi,ᾱ)

= logw0 + e−τE [log(ε · δ)] + log(αi,α − βi,ᾱ) + e−τ log f(βᾱ, αi,α)

since the share of wealth of this trader does not change. Lemmas 22 and 23 imply that

βα < βᾱ and βi,α < βi,ᾱ .

Thus,

log(αi,α − βi,α) > log(αi,α − βi,ᾱ) and f(βi,α, αi,α) > f(βi,ᾱ, αi,α) .

Hence,

U∗i,α > U∗i,ᾱ .
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Ioanid Roşu. A dynamic model of the limit order book. The Review of Financial Studies, 22

(11):4601–4641, 2009.

Michael Rothschild and Joseph E Stiglitz. Increasing risk: I. a definition. In Uncertainty in

Economics, pages 99–121. Elsevier, 1978.

80



Yuliy Sannikov and Andrzej Skrzypacz. Dynamic trading: Price inertia and front-running.

Preprint, 2016.

Adrian Tobias and Markus K Brunnermeier. Covar. The American Economic Review, 106(7):

1705, 2016.

Dimitri Vayanos. Strategic trading and welfare in a dynamic market. The Review of Economic

Studies, 66(2):219–254, 1999.

Dimitri Vayanos and Jean-Luc Vila. Equilibrium interest rate and liquidity premium with

transaction costs. Economic theory, 13(3):509–539, 1999.

Xavier Vives. Strategic supply function competition with private information. Econometrica,

79(6):1919–1966, 2011.

David C Wheelock and Paul W Wilson. Do large banks have lower costs? new estimates of

returns to scale for us banks. Journal of Money, Credit and Banking, 44(1):171–199, 2012.

Kathy Yuan. Asymmetric price movements and borrowing constraints: A rational expectations

equilibrium model of crises, contagion, and confusion. The Journal of Finance, 60(1):379–411,

2005.

81



(a) ” = −1; fl = 2 (b) w = 4; fl = 2

(c) ” = −1; w = 2

(b) L = 5

Figure 2: Equilibrium Price Impact We plot Λ as a function of L.
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(a) p̄1 = p̄2 = 0.5; w1 = w2 = 2 (b) p̄1 = 0.1; p̄2 = 0.9; w1 = w2 = 2

(c) p̄1 = p̄1 = 0.5; w1 = 2; w2 = 2.2 (d) p̄1 = p̄1 = 0.5; w1 = 2; w2 = 3

Figure 3: Price Impact Asymmetry We present contour plots of Λ12/Λ21 as a function of
(q1, q2).
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